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Abstract

Hybrid parallelism techniques are essential for efficiently training
large language models (LLMs). Nevertheless, current automatic
parallel planning frameworks often overlook the simultaneous con-
sideration of node heterogeneity and dynamic network topology
changes, limiting their effectiveness in practical applications. In
this paper, we address these limitations by modeling heterogeneous
nodes within dynamically changing network environments and
leveraging simulation-based strategies to determine optimal par-
allel configurations. Our approach enables fine-grained workload
allocation tailored for heterogeneous nodes and complex network
scenarios, achieving performance competitive with state-of-the-art
methods under regular and stable network conditions. Addition-
ally, we introduce a strategy pruning technique to rapidly discard
infeasible parallel configurations, substantially reducing the search
space and accelerating the search process through parallel execu-
tion within the simulator. Preliminary evaluations confirm that
our method notably enhances training performance on heteroge-
neous nodes and demonstrates improved adaptability in complex,
dynamic scenarios such as cloud computing environments.
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1 Introduction

The rapid growth in parameter count of deep neural networks
(DNNs), especially large language models (LLMs)[30][2][34][29]
[12][24] based on the Transformer[36] architecture, has made dis-
tributed parallel training across large GPU clusters indispensable.
Thus, efficient implementation of distributed training is critical.
Researchers have proposed various parallel strategies[27] [31][32],
including Data Parallelism (DP)[23], Tensor Parallelism (TP)[27],
Pipeline Parallelism (PP)[14][9] [22][25][10], Sequence Parallelism
(SP)[19], and Fully Sharded Data Parallelism (FSDP)[41], to address
computational, storage, and communication challenges in training
large models. However, selecting appropriate parallel strategies
in practical large-scale clusters typically requires extensive man-
ual tuning. While existing automatic search frameworks, such as
ALPA[42], AMP[21], Metis[35] and Galvatron[26], offer some de-
gree of automation, their deployment in real-world scenarios is
limited due to overly idealized assumptions.

This paper aims to address the problem of selecting distributed
parallel strategies more effectively for realistic scenarios. Our core
insight is that computation can be viewed as mapping data and
algorithms onto computational devices, while communica-
tion corresponds to data transmission tasks across network
links. Specifically, by selecting suitable parallel strategies, computa-
tional tasks can be efficiently assigned to heterogeneous computing
devices and communicated through network links. However, due
to device performance heterogeneity and dynamic network condi-
tions, the actual execution time of tasks typically exhibits significant
uncertainty.

The uncertainty in task execution time arises mainly from
two aspects: first, variability in computation and communication
times caused by heterogeneous device performance and fluctua-
tions in network bandwidth; second, additional variations result-
ing from operators’ splitting and fusion processes. For example,
operator fusion reduces memory accesses and thus shortens ex-
ecution time, while operator splitting can effectively utilize idle
computational resources, also reducing execution time. Addition-
ally, decomposing traditional collective communication operations
such as all-reduce into reduce-scatter and all-gather can
significantly enhance communication efficiency.

To address these practical challenges, we propose an integrated
optimization framework combining strategic operator splitting and
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fusion, an adaptive task scheduling strategy based on parallelized
branch-and-bound search, and resource management strategies tai-
lored for heterogeneous computational environments and dynamic
network conditions. We validate our framework using SimAI[37],
an existing performance prediction model, and demonstrate sig-
nificant performance improvements over mainstream frameworks.
Specifically, our contributions include:

o A novel multi-edge physical link abstraction model that more
accurately describes heterogeneous device connectivity char-
acteristics and link contention conditions;

o A parallelized branch-and-bound optimization algorithm
that systematically searches task scheduling strategies, sig-
nificantly improving task execution efficiency;

o Preliminary experimental validation using SimAlI, indicating
the potential of our method to outperform existing main-
stream frameworks under heterogeneous computational en-
vironments and dynamic network conditions.

2 Background and Motivation

This section addresses critical challenges faced in realistic dis-
tributed training environments, specifically illustrated by the sce-
narios depicted in Figure 1. In practical GPU clusters, several factors
significantly impact overall training efficiency and robustness: (1)
heterogeneous GPU setups combining diverse device types, (2) un-
balanced network bandwidth causing performance bottlenecks, and
(3) node failures resulting in computational disruptions.

In Section 2.1, we first examine the impact of GPU performance
heterogeneity on overall system throughput and discuss predictive
performance modeling approaches. In Section 2.2, we analyze dy-
namic network conditions, emphasizing the necessity for adaptive
bandwidth management and fault-tolerance mechanisms. Lastly,
in Section 2.3, we explore strategic operator fusion and splitting
methods, highlighting their potential to effectively mitigate perfor-
mance degradation and improve resource utilization under these
challenging conditions.

Scenario3:
Node failure

Scenario2:
Heterogeneous GPU

Figure 1: Representative Scenarios on hybrid parallelism:
S$1 Dynamic Bandwidth Variations; S2 Heterogeneous GPU
Performance; $3 Device changes and connection adjustments
caused by node failures

2.1 Performance Heterogeneity

Performance heterogeneity refers to variations in computational
speed and capabilities among devices of the same type. Even if all
nodes within a cluster employ GPUs that share the same instruction
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set (e.g., CUDA), significant performance disparities can still exist
due to differences in microarchitecture or hardware generation.

140
o 120
o
S 100
w
=
o 80 NVIDIA H100
>
2 &0 NVIDIA V100
s
3 40
—_
£ 20
0
1 64128 256 512 1024

Batch Size

Figure 2: Attention Throughput: H100 vs V100

The Roofline Model[38] is commonly used to analyze and pre-
dict computational system performance. It characterizes the perfor-
mance of a system using the following equation:

rooflinegyy = min(K X memBW,, FLOPs)) (1)

where FLOPs,, is the peak floating-point operations per second

and memBW),, is the peak memory bandwidth of the GPU. The

term K represents the arithmetic intensity, defined as the number
of floating-point operations per memory access, computed as:

K= FLOPsy @
memy

Figure 2 illustrates throughput differences between H100 and
V100 GPUs executing the same attention kernel. We observe sig-
nificant computational capability differences between these GPUs.
Once the computational load reaches a certain threshold, the GPU
throughput stabilizes at a constant value.

However, the Roofline Model has limitations in accurately model-
ing fused operators and operations with explicitly specified resource
usage, as actual GPU execution times are heavily influenced by spe-
cific hardware attributes. Prior research[40] [20] has employed
Multi-Layer Perceptron (MLP) to estimate GPU performance, ad-
dressing performance as a nonlinear, multivariate function. In
such scenarios, traditional optimization methods like Integer Lin-
ear Programming (ILP) and Dynamic Programming (DP) struggle
to effectively map variable-length operators onto devices. This
limitation arises fundamentally because ILP and DP cannot solve
optimization problems with nonlinear objectives in convex spaces.

In contrast, simulators precisely predict CUDA kernel execu-
tion times, providing accurate operator execution time estimates.
Moreover, simulators can concurrently evaluate execution times
for multiple scheduling strategies, significantly accelerating the
identification of optimal parallelization strategies.

2.2 Dynamic Networks

Dynamic networks are characterized by topological changes over
time, contrasting with static networks that maintain constant nodes
and edges. Formally, a dynamic network can be modeled as a tem-
poral graph, represented by a sequence G(0), G(1), ..., G(t), or a
time-dependent edge set E(t).
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Efficient parallel training of large language models (LLMs) across
multiple GPUs inherently faces dynamic network conditions. Com-
munication bandwidth fluctuates due to hardware limitations or
network congestion, while long-running tasks frequently experi-
ence node slowdowns or failures.

2.2.1  Dynamic Bandwidth Variations. In practical distributed train-
ing scenarios, the available bandwidth among nodes and within
nodes frequently fluctuates rather than remaining constant. Such
variations stem from multi-tenant data center networks, hardware
bottlenecks, and background workloads. However, current dis-
tributed training frameworks[23][1] [33][17] typically cause GPUs
with higher bandwidth lanes to idle, waiting for GPUs with lower
bandwidth lanes to complete data transmission, despite similar
computational capabilities.

2.2.2 Dynamic Node and Interconnect Adjustments. In long-
running, large-scale training tasks, node failures or temporary dis-
connections are inevitable. Traditional approaches typically halt
training upon encountering node failures, reloading from check-
points, and restarting new nodes, resulting in substantial down-
time and wastage of computational resources. Recent research has
emphasized fault-tolerance capabilities, which enable distributed
training systems to operate continuously despite node additions
or removals. For instance, ReCycle[11] leverages the redundancy
inherent in data-parallel training by dynamically reallocating work-
loads from failed nodes to the remaining active nodes, avoiding
delays from node replacement. Oobleck[15] proactively computes
pipeline-parallel configurations optimized for varying numbers
of nodes, seamlessly transitioning to smaller-scale configurations
upon node removal, thereby eliminating the need for retraining.

2.3 Operation Fusion and Split

Modern machine learning frameworks [23][41][3][16] typically ac-
celerate computation by forming efficient fused kernels through
the fusion of multiple consecutive operators, thereby reducing data
movements from external memory. A classic example is Flash At-
tention[8], which combines originally independent operations such
as matmul, dropout, softmax, and mask into a single fused kernel,
significantly shortening execution time.

In contrast to operator fusion, distributed computations often
utilize an operator-splitting strategy, exemplified by decompos-
ing the standard A11-Reduce operation into two sub-operations:
Reduce-Scatter and Al1-Gather. As illustrated in Figure 3, the
traditional A11-Reduce aggregates gradients fully at a single node
before broadcasting the result to all other nodes. The decomposed
approach, however, first partitions and aggregates gradients across
nodes via the Reduce-Scatter step, and subsequently dissemi-
nates these partial aggregation results to all nodes through the
All-Gather step. This decomposition effectively eliminates single-
node bottlenecks and enhances overall communication efficiency.

Moreover, the process of splitting and recombining operators
introduces additional opportunities for optimization in parallel com-
putation. By decomposing operators into smaller sub-operations
and recombining them in novel configurations, new operators with
varying execution characteristics emerge. Searching through these
configurations enables identification of optimal mappings onto het-
erogeneous hardware, thus effectively mitigating the previously
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Figure 3: Comparison between traditional All-Reduce and
decomposed All-Reduce (Reduce-Scatter followed by All-
Gather).

discussed straggler effect, and ultimately leading to more balanced
workload distribution and improved overall performance.

3 Design

We extend the traditional optimization approach of tensor
programs[16][39][13] to automatic parallel strategies across devices.
Our core idea is to split operators into lower-level sub-operators and
then recombine them into new operators using a simulator to pre-
dict their execution times. Constraints such as data dependencies,
memory size, and bandwidth are considered to identify the optimal
parallel strategy. Unlike previous methods that focused purely on
parallel strategy search or heterogeneous computing, our method
bridges the gap between tensor-program optimization and model
parallelism. As illustrated in Figure 4, GPU devices possess four
distinct memory hierarchy levels, each of which offers different
bandwidth characteristics. The placement of data at these vary-
ing levels directly influences the computational efficiency. Given
the heterogeneous environment and dynamic network conditions,
operator execution times vary across different devices and their
interconnections, and this variation does not adhere to simple linear
relationships. Consequently, our approach—splitting operators first
and then fusing them—allows the discovery of superior strategies.
Although our method could theoretically support deeper hierar-
chical optimizations, our current work focuses only on first-level
optimization, specifically, splitting models across different devices
and searching at the global memory level to obtain optimal parallel
strategies.

In Section 3.1, we introduce a Multi-Edges Assumption, and in
Section 3.2, we introduce the Problem Formulation. In Section 3.3,
the proposed algorithm is discussed. In Section 3.4, we discuss the
search space used in our design.

3.1 Multi-Edges Assumption

The introduction of multi-edges is motivated by the fact that in real-
world scenarios, a single device often has multiple physical links to
other devices. As illustrated in Figure 5(a), within a DGX H100[7]
system, the connections from each GPU to the NVSwitch are un-
even, and the NVSwitches located on both sides have more ports
and higher bandwidth connections, indicating that modeling these
interconnected paths as equivalent connections may lead to signif-
icant discrepancies in transmission time. In addition, in NVIDIA
DGX servers[7][5][6][4], the NVSwitch can perform simple arith-
metic operations, which may reduce transmission bandwidth and
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Figure 4: Hierarchy of GPU memory bandwidth optimization levels. The first level represents inter-device connections,
providing a bandwidth ranging from several GB/s to tens of GB/s. The second level indicates global memory, with a bandwidth
typically ranging from hundreds of GB/s to approximately 1 TB/s. The third level corresponds to the shared memory, which
offers a bandwidth of several TB/s. Finally, the highest level is the register file, delivering the greatest bandwidth, typically tens

of TB/s.

thus influence transmission times. Similarly, Google’s TPU[18][28]
employs a torus/mesh architecture that provides multiple inter-
connected paths across different dimensions. Moreover, as shown
in Figure 5(b), typical NVIDIA GPUs offer NVLink C2C and PCle
connections simultaneously. Although the cudaMemcpy function
defaults to using the NVLink connection unless explicitly disabled
by invoking cudaDeviceDisablePeerAccess, for NVIDIA GPUs,
the NVLink and PCle transfers cannot be simultaneously activated
within the same kernel execution. Given these considerations, in-
troducing a multi-edge design to explicitly model multiple physical
links as potentially concurrent or conflicting network resources
is essential. This approach accurately simulates parallel transmis-
sions, avoids overly simplistic single-bandwidth assumptions, and
properly manages link contention states during data-transfer sched-
uling.

NVSwitch i NVSwitch f NVSwitch i NVSwitch

T snvLinks

5NVL|nks 4NVL|nkS

(a) Unequal bandwidth in DGX H100 (b) Conflicting connections

between C2C NVLink and
PCle

Figure 5: Two typical types of links: (a) unequal bandwidth,
(b) conflicting connections.

3.2 Problem Formulation

We formulate an operator-level scheduling and resource allocation
problem for distributed DNN tasks across a heterogeneous multi-
edge device graph. The goal is to optimally schedule computational
operators considering their data dependencies and recombination
possibilities to minimize the total weighted completion time for
training multiple models. The execution and communication times
are deterministically predicted using a simulation-based perfor-
mance model.
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3.2.1 Input Specification. Formally, we represent the computa-
tional graph for each model i as Gé. = (Vi, Eic), where Vé denotes
atomic computational operators (e.g., convolution, matrix multi-
plication), and Elc specifies data dependencies (defining execution
order among operators).

The set of available heterogeneous computing devices is de-
noted by Vp = dy,...,dpy, comprising GPUs, TPUs, and similar
hardware units with diverse computational capacities and mem-
ory resources. Devices are interconnected via multi-edge physical
links, represented as L4, 4, ), each with multiple bandwidth capac-

ities B reflecting concurrent communication channels with

dj,dx
VarymEg ban)dwidth and latency.

Operator execution time Texec (v, dj) for operator v on device
d; is obtained from a simulation model based on device-specific
characteristics. The communication duration

Tecomm (size, £,) indicates the time required to transfer data of a
given size through link #.

Memory constraints include operator execution memory,
Memop(v), representing memory usage during operator execu-
tion, and intermediate data memory, Memdata(u, v), required for
storing data transferred from operator u to v.

3.2.2  Output Specification. The solution comprises:

e Device assignment D(v) for each operator v, with execution
start s, and end e, times.

e Selected communication link £, ;) and the respective start
S(u,0) and end e(,, ) times for each data dependency (u, ).

3.2.3 Optimization Objective. The objective is to minimize the
weighted sum of the completion times (makespans) for all models:

n

wi - T

compl’ where T:

compl ~ ®)

min

= max ey.
D,s,t

1
i=1 veVe

Here, w; denotes the priority weight for model i, and each
model’s completion time is determined by its final operator’s end
time.

3.24 Constraints. The primary constraints include:
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e Data Dependency Constraints: An operator v can begin
only after all predecessors and their data transfers are com-
pleted:

©

e Communication Constraints: Data transfer for depen-
dency (u,0) commences only after operator u completes
execution:

So = Max ey, €(y; ), YUj € predecessors(v).

®)
¢ Memory Constraints: Memory usage on device d; must
not exceed its total capacity My;:

Z Memy,p (v) + Z Memyatq(0, W) < Mg, .

UEVCJ (U,W) EECJ'

S(u) 2 €u-

(©)

e Bandwidth Constraints: Total bandwidth usage on each
link £, at time t must not exceed its bandwidth limit B :

Z rate(c) < Bg.

ceC(t,a)

™

3.3 Algorithm

Algorithm 1 presents our parallel branch-and-bound search method
to efficiently explore the optimal operator assignment and schedul-
ing across heterogeneous computing resources.

Initially, the algorithm starts with an initialization procedure,
where input data, including computation graphs, device specifica-
tions, and resource constraints, are processed. A root node, repre-
senting an initial state with all operators unassigned, is created (line
2). The best solution and its upper bound (minimal known cost)
are initialized, optionally leveraging a heuristic greedy strategy to
quickly provide a baseline solution (line 4). A priority queue is then
established to organize exploration nodes by their estimated cost
(line 5).

The main parallel exploration procedure (ParallelSearch, lines
6-16) proceeds by iteratively examining nodes from the priority
queue. At each iteration, the node with the minimal estimated com-
pletion cost is selected (line 8). If this node represents a complete
assignment (i.e., all operators are assigned), the algorithm compares
its cost against the current best-known solution, updating the latter
if an improvement is found (lines 9-10).

If the node is incomplete, the algorithm generates feasible child
nodes representing possible next assignments of operators, consid-
ering current scheduling constraints (lines 12-13). Each feasible
child node undergoes a cost estimation procedure (line 13). Nodes
whose estimated cost exceeds the current best-known upper bound
are discarded early, reducing unnecessary exploration (lines 14-15).

The process repeats until all promising solutions have been ex-
plored or pruned, ultimately returning the optimal scheduling solu-
tion (line 16).

3.4 Search Space

Our method considers multiple splitting strategies at the operator
level, where each operator has a maximum of K possible splits,
resulting in a combinational complexity of O(K |Vé|). At the de-
vice level, each resulting sub-operator needs to be mapped onto
one of the available devices in |Vp|, adding another layer of com-
plexity, up to O(|Vp|P), where p is the number of sub-operators.
Furthermore, scheduling and communication sequences must be
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Algorithm 1: Parallel Branch-and-Bound Search

Function Initialize():
Read input graphs, devices, constraints;
Create root node Nyoot (all operators unassigned);
best UB « +oco, best_solution « 0;
(Optional) Greedy initialization for best_solution,
best_UB;
B PQ « PriorityQueue(), PQ.push(Nroot);
Function ParallelSearch(PQ):
while PQ # 0 do
N « PQ.pop();
if N is complete solution and F(N) < best_UB then
best_solution < N, best_UB « F(N);
continue;
for each feasible child N pijy of N do
Estimate cost F(Nghild);
if F(N_piq) < best_UB then
| PQ.push(Nepia);

return best_solution;

arranged temporally, which causes the overall search space to grow
exponentially.

To cope with this immense search space, we first apply con-
straints to eliminate infeasible choices. Subsequently, heuristic rules
are utilized to effectively reduce the initial search scope, such as
presetting initial search points based on multi-edge graph struc-
tures and GPU performance. Additionally, techniques such as multi-
threading can be employed to concurrently simulate and evaluate
multiple scenarios, significantly accelerating the search process.

4 Evaluation

We use SimAl to evaluate the effectiveness of our proposed ap-
proach. The evaluation considers two scenarios: heterogeneous
computation and dynamic network conditions.

Environment Setup. Specifically, we utilize SimAI to simulate
task execution times by leveraging the simulated execution results
to guide the parameter optimization. SimAI’s AIOB invokes CUDA
kernel simulations for three distinct real GPUs. Subsequently, the
AICB module generates workloads for further simulations and
analyses. The GPUs used in this study are as follows:

o RTX4090D: Features 14,592 CUDA cores based on the Ada
Lovelace architecture, 114 Streaming Multiprocessors (SMs), a
boost frequency of 2.52 GHz, 24 GB GDDR6X memory, and fab-
ricated using TSMC’s 5nm process.

e 120: Equipped with 11,776 CUDA cores based on the Ada
Lovelace architecture, 92 SMs, a boost frequency of 2.52 GHz, 48
GB GDDR6 memory, and also utilizes TSMC’s 5nm process.

e V100: Contains 5,120 CUDA cores based on the Volta architecture,
80 SMs, a boost frequency of 1.38 GHz, 32 GB HBM memory, and
is manufactured using TSMC’s 12nm process.

Models and Baselines. To demonstrate that our approach ef-
fectively identifies efficient plans, we evaluate four representative
LLMs: LLaMA_7B, GPT_13B, GPT_22B, and GPT_175B. We compare
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Figure 6: Comparison of execution times for training one epoch under heterogeneous computing devices and dynamic network
conditions: (a) RTX4090D combined with L20 GPUs, (b) RTX4090D combined with V100 GPUs, and (c) relative execution times
for different tensor parallelism (TP) sizes under varying network bandwidth conditions.

our method with Megatron using its default configuration as a
baseline. We consider two evaluation scenarios: heterogeneous
computation and dynamic network conditions.

4.1 Scenario 1: Heterogeneous Computation.

We evaluate the performance on clusters comprising 8, 16, 32, and
256 nodes (each containing an equal number of two GPU types)
under conditions of both similar and significantly different device
performance. Although the RTX4090D and L20 GPUs originate
from the same wafer, differences in the enabled functional modules
result in minor performance variations. As shown in Figure 6(a),
compared with conventional task allocation with equal compu-
tational workloads, our approach achieves approximately 1.01 to
1.03 times better performance than the general-purpose Megatron
framework by utilizing layer-level task assignment.

For environments with substantial performance disparities, such
as integrating the latest RTX4090D GPUs with older V100 GPUs,
significant differences in the computation times exist. Conse-
quently, our method substantially enhances performance, achieving
speedups ranging from approximately 1.74 to 4.69 times compared
with Megatron, as illustrated in Figure 6(b).

4.2 Scenario 2: Dynamic Network Conditions.

We evaluate the execution time for training one epoch across dif-
ferent parallel strategies under varying network conditions using
8, 16, 64, and 256 V100-32G-PCle GPUs. Figure 6(c) shows the ab-
solute execution time under different network conditions when
comparing lower TP sizes to higher TP sizes. Specifically, we set TP
sizes of 2 versus 4 for the 7B model, 4 versus 8 for the 13B model, 8
versus 16 for the 22B model, and 16 versus 32 for the 175B model.

We observe that, for models with fewer parameters, a lower net-
work bandwidth increases the execution time by approximately 25%
to 52%. This indicates that communication overhead significantly
slows down training under low-bandwidth conditions, with higher
TP sizes causing even greater increases in the execution time. Con-
versely, when the network bandwidth is not constrained, larger TP
sizes still slightly increase the execution time by approximately 2%
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to 8%. However, for very large models, the overhead introduced by
higher TP parallelism is offset by the non-overlapping communica-
tion time inherent in pipeline parallelism (PP).

5 Limitation

Our study has the following two limitations:

First, due to simulator constraints, we are currently limited to
parallel strategies defined by the Megatron-LM. In future work, we
plan to implement a native operator-level simulator rather than
relying on coarse-grained model-level task assignments.

Second, to accommodate variable-length operators, the search
space grows exponentially. Even with multithreading, it is difficult
for the CPU to match the search efficiency of existing methods. We
plan to leverage FPGA-based acceleration for simulations in future
work.

6 Conclusion

This study proposes a multi-edge abstraction to address task exe-
cution for LLMs under realistic dynamic network conditions and
heterogeneous computing environments. Through experiments, we
demonstrate that operator splitting effectively reduces task exe-
cution times in heterogeneous settings. Our method significantly
outperforms existing frameworks, achieving notable speedups of
up to 4.69 times. Moreover, the network conditions significantly in-
fluence the search results for parallel strategies. Under varying net-
work environments, newly identified parallel strategies can reduce
execution times by up to 52% compared with previously optimal
strategies.
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