n)
Py Rethinking Dynamic Networks and Heterogeneous Computing

with Automatic Parallelization

Ruilong WU
The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
rwu408@connect.hkust-gz.edu.cn

Xinyu Chen

The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China
xinyuchen@hkust-gz.edu.cn

Abstract

Hybrid parallelism techniques are essential for efficiently training
large language models (LLMs). Nevertheless, current automatic
parallel planning frameworks often overlook the simultaneous con-
sideration of node heterogeneity and dynamic network topology
changes, limiting their effectiveness in practical applications. In
this paper, we address these limitations by modeling heterogeneous
nodes within dynamically changing network environments and
leveraging simulation-based strategies to determine optimal par-
allel configurations. Our approach enables fine-grained workload
allocation tailored for heterogeneous nodes and complex network
scenarios, achieving performance competitive with state-of-the-art
methods under regular and stable network conditions. Addition-
ally, we introduce a strategy pruning technique to rapidly discard
infeasible parallel configurations, substantially reducing the search
space and accelerating the search process through parallel execu-
tion within the simulator. Preliminary evaluations confirm that
our method notably enhances training performance on heteroge-
neous nodes and demonstrates improved adaptability in complex,
dynamic scenarios such as cloud computing environments.

CCS Concepts

« Networks — Data center networks.

Keywords

Dynamic Networks, Hybrid parallelism, Distributed Training, Het-
erogeneous Computing

ACM Reference Format:

Ruilong WU, Xinjiao Li, Yisu Wang, Xinyu Chen, and Dirk Kutscher. 2025.
Rethinking Dynamic Networks and Heterogeneous Computing with Auto-
matic Parallelization. In 9th Asia-Pacific Workshop on Networking (APNET
2025), August 07-08, 2025, Shang Hai, China. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3735358.3735382

This work is licensed under a Creative Commons Attribution International
4.0 License.

APNET 2025, Shang Hai, China

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1401-6/25/08
https://doi.org/10.1145/3735358.3735382

Xinjiao Li
The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
x1i886@connect.hkust-gz.edu.cn

Yisu Wang
The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
ywang418@connect.hkust-gz.edu.cn

Dirk Kutscher

The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China
dku@hkust-gz.edu.cn

1 Introduction

The rapid growth in parameter count of deep neural networks
(DNNs), especially large language models (LLMs)[30][2][34][29]
[12][24] based on the Transformer[36] architecture, has made dis-
tributed parallel training across large GPU clusters indispensable.
Thus, efficient implementation of distributed training is critical.
Researchers have proposed various parallel strategies[27] [31][32],
including Data Parallelism (DP)[23], Tensor Parallelism (TP)[27],
Pipeline Parallelism (PP)[14][9] [22][25][10], Sequence Parallelism
(SP)[19], and Fully Sharded Data Parallelism (FSDP)[41], to address
computational, storage, and communication challenges in training
large models. However, selecting appropriate parallel strategies
in practical large-scale clusters typically requires extensive man-
ual tuning. While existing automatic search frameworks, such as
ALPA[42], AMP[21], Metis[35] and Galvatron[26], offer some de-
gree of automation, their deployment in real-world scenarios is
limited due to overly idealized assumptions.

This paper aims to address the problem of selecting distributed
parallel strategies more effectively for realistic scenarios. Our core
insight is that computation can be viewed as mapping data and
algorithms onto computational devices, while communica-
tion corresponds to data transmission tasks across network
links. Specifically, by selecting suitable parallel strategies, computa-
tional tasks can be efficiently assigned to heterogeneous computing
devices and communicated through network links. However, due
to device performance heterogeneity and dynamic network condi-
tions, the actual execution time of tasks typically exhibits significant
uncertainty.

The uncertainty in task execution time arises mainly from
two aspects: first, variability in computation and communication
times caused by heterogeneous device performance and fluctua-
tions in network bandwidth; second, additional variations result-
ing from operators’ splitting and fusion processes. For example,
operator fusion reduces memory accesses and thus shortens ex-
ecution time, while operator splitting can effectively utilize idle
computational resources, also reducing execution time. Addition-
ally, decomposing traditional collective communication operations
such as all-reduce into reduce-scatter and all-gather can
significantly enhance communication efficiency.

To address these practical challenges, we propose an integrated
optimization framework combining strategic operator splitting and

https://orcid.org/0009-0008-0834-6723
https://orcid.org/0009-0003-9591-4031
https://orcid.org/0009-0004-4185-6021
https://orcid.org/0000-0003-1951-5015
https://orcid.org/0000-0002-9021-9916
https://doi.org/10.1145/3735358.3735382
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3735358.3735382
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735358.3735382&domain=pdf&date_stamp=2025-08-06

APNET 2025, August 07-08, 2025, Shang Hai, China

fusion, an adaptive task scheduling strategy based on parallelized
branch-and-bound search, and resource management strategies tai-
lored for heterogeneous computational environments and dynamic
network conditions. We validate our framework using SimAI[37],
an existing performance prediction model, and demonstrate sig-
nificant performance improvements over mainstream frameworks.
Specifically, our contributions include:

o A novel multi-edge physical link abstraction model that more
accurately describes heterogeneous device connectivity char-
acteristics and link contention conditions;

o A parallelized branch-and-bound optimization algorithm
that systematically searches task scheduling strategies, sig-
nificantly improving task execution efficiency;

o Preliminary experimental validation using SimAlI, indicating
the potential of our method to outperform existing main-
stream frameworks under heterogeneous computational en-
vironments and dynamic network conditions.

2 Background and Motivation

This section addresses critical challenges faced in realistic dis-
tributed training environments, specifically illustrated by the sce-
narios depicted in Figure 1. In practical GPU clusters, several factors
significantly impact overall training efficiency and robustness: (1)
heterogeneous GPU setups combining diverse device types, (2) un-
balanced network bandwidth causing performance bottlenecks, and
(3) node failures resulting in computational disruptions.

In Section 2.1, we first examine the impact of GPU performance
heterogeneity on overall system throughput and discuss predictive
performance modeling approaches. In Section 2.2, we analyze dy-
namic network conditions, emphasizing the necessity for adaptive
bandwidth management and fault-tolerance mechanisms. Lastly,
in Section 2.3, we explore strategic operator fusion and splitting
methods, highlighting their potential to effectively mitigate perfor-
mance degradation and improve resource utilization under these
challenging conditions.

Scenario3:
Node failure

Scenario2:
Heterogeneous GPU

Figure 1: Representative Scenarios on hybrid parallelism:
S$1 Dynamic Bandwidth Variations; S2 Heterogeneous GPU
Performance; $3 Device changes and connection adjustments
caused by node failures

2.1 Performance Heterogeneity

Performance heterogeneity refers to variations in computational
speed and capabilities among devices of the same type. Even if all
nodes within a cluster employ GPUs that share the same instruction

165

Ruilong WU, Xinjiao Li, Yisu Wang, Xinyu Chen, and Dirk Kutscher

set (e.g., CUDA), significant performance disparities can still exist
due to differences in microarchitecture or hardware generation.

140
o 120
o
S 100
w
=
o 80 NVIDIA H100
>
2 &0 NVIDIA V100
s
3 40
—_
£ 20
0
1 64128 256 512 1024

Batch Size

Figure 2: Attention Throughput: H100 vs V100

The Roofline Model[38] is commonly used to analyze and pre-
dict computational system performance. It characterizes the perfor-
mance of a system using the following equation:

rooflinegyy = min(K X memBW,, FLOPs)) (1)

where FLOPs,, is the peak floating-point operations per second

and memBW),, is the peak memory bandwidth of the GPU. The

term K represents the arithmetic intensity, defined as the number
of floating-point operations per memory access, computed as:

K= FLOPsy @
memy

Figure 2 illustrates throughput differences between H100 and
V100 GPUs executing the same attention kernel. We observe sig-
nificant computational capability differences between these GPUs.
Once the computational load reaches a certain threshold, the GPU
throughput stabilizes at a constant value.

However, the Roofline Model has limitations in accurately model-
ing fused operators and operations with explicitly specified resource
usage, as actual GPU execution times are heavily influenced by spe-
cific hardware attributes. Prior research[40] [20] has employed
Multi-Layer Perceptron (MLP) to estimate GPU performance, ad-
dressing performance as a nonlinear, multivariate function. In
such scenarios, traditional optimization methods like Integer Lin-
ear Programming (ILP) and Dynamic Programming (DP) struggle
to effectively map variable-length operators onto devices. This
limitation arises fundamentally because ILP and DP cannot solve
optimization problems with nonlinear objectives in convex spaces.

In contrast, simulators precisely predict CUDA kernel execu-
tion times, providing accurate operator execution time estimates.
Moreover, simulators can concurrently evaluate execution times
for multiple scheduling strategies, significantly accelerating the
identification of optimal parallelization strategies.

2.2 Dynamic Networks

Dynamic networks are characterized by topological changes over
time, contrasting with static networks that maintain constant nodes
and edges. Formally, a dynamic network can be modeled as a tem-
poral graph, represented by a sequence G(0), G(1), ..., G(t), or a
time-dependent edge set E(t).

Rethinking Dynamic Networks and Heterogeneous Computing with Automatic Parallelization

Efficient parallel training of large language models (LLMs) across
multiple GPUs inherently faces dynamic network conditions. Com-
munication bandwidth fluctuates due to hardware limitations or
network congestion, while long-running tasks frequently experi-
ence node slowdowns or failures.

2.2.1 Dynamic Bandwidth Variations. In practical distributed train-
ing scenarios, the available bandwidth among nodes and within
nodes frequently fluctuates rather than remaining constant. Such
variations stem from multi-tenant data center networks, hardware
bottlenecks, and background workloads. However, current dis-
tributed training frameworks[23][1] [33][17] typically cause GPUs
with higher bandwidth lanes to idle, waiting for GPUs with lower
bandwidth lanes to complete data transmission, despite similar
computational capabilities.

2.2.2 Dynamic Node and Interconnect Adjustments. In long-
running, large-scale training tasks, node failures or temporary dis-
connections are inevitable. Traditional approaches typically halt
training upon encountering node failures, reloading from check-
points, and restarting new nodes, resulting in substantial down-
time and wastage of computational resources. Recent research has
emphasized fault-tolerance capabilities, which enable distributed
training systems to operate continuously despite node additions
or removals. For instance, ReCycle[11] leverages the redundancy
inherent in data-parallel training by dynamically reallocating work-
loads from failed nodes to the remaining active nodes, avoiding
delays from node replacement. Oobleck[15] proactively computes
pipeline-parallel configurations optimized for varying numbers
of nodes, seamlessly transitioning to smaller-scale configurations
upon node removal, thereby eliminating the need for retraining.

2.3 Operation Fusion and Split

Modern machine learning frameworks [23][41][3][16] typically ac-
celerate computation by forming efficient fused kernels through
the fusion of multiple consecutive operators, thereby reducing data
movements from external memory. A classic example is Flash At-
tention[8], which combines originally independent operations such
as matmul, dropout, softmax, and mask into a single fused kernel,
significantly shortening execution time.

In contrast to operator fusion, distributed computations often
utilize an operator-splitting strategy, exemplified by decompos-
ing the standard A11-Reduce operation into two sub-operations:
Reduce-Scatter and Al1-Gather. As illustrated in Figure 3, the
traditional A11-Reduce aggregates gradients fully at a single node
before broadcasting the result to all other nodes. The decomposed
approach, however, first partitions and aggregates gradients across
nodes via the Reduce-Scatter step, and subsequently dissemi-
nates these partial aggregation results to all nodes through the
All-Gather step. This decomposition effectively eliminates single-
node bottlenecks and enhances overall communication efficiency.

Moreover, the process of splitting and recombining operators
introduces additional opportunities for optimization in parallel com-
putation. By decomposing operators into smaller sub-operations
and recombining them in novel configurations, new operators with
varying execution characteristics emerge. Searching through these
configurations enables identification of optimal mappings onto het-
erogeneous hardware, thus effectively mitigating the previously

166

APNET 2025, August 07-08, 2025, Shang Hai, China

o o 7
P [l 2
All Reduce |Gradient P2 [T 2l
P3 [0 (2D
—m Reduce scatter%
All gather

PO P1 P2 P3

Figure 3: Comparison between traditional All-Reduce and
decomposed All-Reduce (Reduce-Scatter followed by All-
Gather).

discussed straggler effect, and ultimately leading to more balanced
workload distribution and improved overall performance.

3 Design

We extend the traditional optimization approach of tensor
programs[16][39][13] to automatic parallel strategies across devices.
Our core idea is to split operators into lower-level sub-operators and
then recombine them into new operators using a simulator to pre-
dict their execution times. Constraints such as data dependencies,
memory size, and bandwidth are considered to identify the optimal
parallel strategy. Unlike previous methods that focused purely on
parallel strategy search or heterogeneous computing, our method
bridges the gap between tensor-program optimization and model
parallelism. As illustrated in Figure 4, GPU devices possess four
distinct memory hierarchy levels, each of which offers different
bandwidth characteristics. The placement of data at these vary-
ing levels directly influences the computational efficiency. Given
the heterogeneous environment and dynamic network conditions,
operator execution times vary across different devices and their
interconnections, and this variation does not adhere to simple linear
relationships. Consequently, our approach—splitting operators first
and then fusing them—allows the discovery of superior strategies.
Although our method could theoretically support deeper hierar-
chical optimizations, our current work focuses only on first-level
optimization, specifically, splitting models across different devices
and searching at the global memory level to obtain optimal parallel
strategies.

In Section 3.1, we introduce a Multi-Edges Assumption, and in
Section 3.2, we introduce the Problem Formulation. In Section 3.3,
the proposed algorithm is discussed. In Section 3.4, we discuss the
search space used in our design.

3.1 Multi-Edges Assumption

The introduction of multi-edges is motivated by the fact that in real-
world scenarios, a single device often has multiple physical links to
other devices. As illustrated in Figure 5(a), within a DGX H100[7]
system, the connections from each GPU to the NVSwitch are un-
even, and the NVSwitches located on both sides have more ports
and higher bandwidth connections, indicating that modeling these
interconnected paths as equivalent connections may lead to signif-
icant discrepancies in transmission time. In addition, in NVIDIA
DGX servers[7][5][6][4], the NVSwitch can perform simple arith-
metic operations, which may reduce transmission bandwidth and

APNET 2025, August 07-08, 2025, Shang Hai, China

To Share
Memory
To Device

To Register

files

Ruilong WU, Xinjiao Li, Yisu Wang, Xinyu Chen, and Dirk Kutscher

Op,
A Register Files
OP; Shared Memory
Opy Global Memory
Op,, Cross-device Memory

Figure 4: Hierarchy of GPU memory bandwidth optimization levels. The first level represents inter-device connections,
providing a bandwidth ranging from several GB/s to tens of GB/s. The second level indicates global memory, with a bandwidth
typically ranging from hundreds of GB/s to approximately 1 TB/s. The third level corresponds to the shared memory, which
offers a bandwidth of several TB/s. Finally, the highest level is the register file, delivering the greatest bandwidth, typically tens

of TB/s.

thus influence transmission times. Similarly, Google’s TPU[18][28]
employs a torus/mesh architecture that provides multiple inter-
connected paths across different dimensions. Moreover, as shown
in Figure 5(b), typical NVIDIA GPUs offer NVLink C2C and PCle
connections simultaneously. Although the cudaMemcpy function
defaults to using the NVLink connection unless explicitly disabled
by invoking cudaDeviceDisablePeerAccess, for NVIDIA GPUs,
the NVLink and PCle transfers cannot be simultaneously activated
within the same kernel execution. Given these considerations, in-
troducing a multi-edge design to explicitly model multiple physical
links as potentially concurrent or conflicting network resources
is essential. This approach accurately simulates parallel transmis-
sions, avoids overly simplistic single-bandwidth assumptions, and
properly manages link contention states during data-transfer sched-
uling.

NVSwitch i NVSwitch f NVSwitch i NVSwitch

T snvLinks

5NVL|nks 4NVL|nkS

(a) Unequal bandwidth in DGX H100 (b) Conflicting connections

between C2C NVLink and
PCle

Figure 5: Two typical types of links: (a) unequal bandwidth,
(b) conflicting connections.

3.2 Problem Formulation

We formulate an operator-level scheduling and resource allocation
problem for distributed DNN tasks across a heterogeneous multi-
edge device graph. The goal is to optimally schedule computational
operators considering their data dependencies and recombination
possibilities to minimize the total weighted completion time for
training multiple models. The execution and communication times
are deterministically predicted using a simulation-based perfor-
mance model.

167

3.2.1 Input Specification. Formally, we represent the computa-
tional graph for each model i as Gé. = (Vi, Eic), where Vé denotes
atomic computational operators (e.g., convolution, matrix multi-
plication), and Elc specifies data dependencies (defining execution
order among operators).

The set of available heterogeneous computing devices is de-
noted by Vp = dy,...,dpy, comprising GPUs, TPUs, and similar
hardware units with diverse computational capacities and mem-
ory resources. Devices are interconnected via multi-edge physical
links, represented as L4, 4,), each with multiple bandwidth capac-

ities B reflecting concurrent communication channels with

dj,dx
VarymEg ban)dwidth and latency.

Operator execution time Texec (v, dj) for operator v on device
d; is obtained from a simulation model based on device-specific
characteristics. The communication duration

Tecomm (size, £,) indicates the time required to transfer data of a
given size through link #.

Memory constraints include operator execution memory,
Memop(v), representing memory usage during operator execu-
tion, and intermediate data memory, Memdata(u, v), required for
storing data transferred from operator u to v.

3.2.2 Output Specification. The solution comprises:

e Device assignment D(v) for each operator v, with execution
start s, and end e, times.

e Selected communication link £, ;) and the respective start
S(u,0) and end e(,,) times for each data dependency (u,).

3.2.3 Optimization Objective. The objective is to minimize the
weighted sum of the completion times (makespans) for all models:

n

wi - T

compl’ where T:

compl ~ ®)

min

= max ey.
D,s,t

1
i=1 veVe

Here, w; denotes the priority weight for model i, and each
model’s completion time is determined by its final operator’s end
time.

3.24 Constraints. The primary constraints include:

Rethinking Dynamic Networks and Heterogeneous Computing with Automatic Parallelization

e Data Dependency Constraints: An operator v can begin
only after all predecessors and their data transfers are com-
pleted:

©

e Communication Constraints: Data transfer for depen-
dency (u,0) commences only after operator u completes
execution:

So = Max ey, €(y;), YUj € predecessors(v).

®)
¢ Memory Constraints: Memory usage on device d; must
not exceed its total capacity My;:

Z Memy,p (v) + Z Memyatq(0, W) < Mg, .

UEVCJ (U,W) EECJ'

S(u) 2 €u-

(©)

e Bandwidth Constraints: Total bandwidth usage on each
link £, at time t must not exceed its bandwidth limit B :

Z rate(c) < Bg.

ceC(t,a)

™

3.3 Algorithm

Algorithm 1 presents our parallel branch-and-bound search method
to efficiently explore the optimal operator assignment and schedul-
ing across heterogeneous computing resources.

Initially, the algorithm starts with an initialization procedure,
where input data, including computation graphs, device specifica-
tions, and resource constraints, are processed. A root node, repre-
senting an initial state with all operators unassigned, is created (line
2). The best solution and its upper bound (minimal known cost)
are initialized, optionally leveraging a heuristic greedy strategy to
quickly provide a baseline solution (line 4). A priority queue is then
established to organize exploration nodes by their estimated cost
(line 5).

The main parallel exploration procedure (ParallelSearch, lines
6-16) proceeds by iteratively examining nodes from the priority
queue. At each iteration, the node with the minimal estimated com-
pletion cost is selected (line 8). If this node represents a complete
assignment (i.e., all operators are assigned), the algorithm compares
its cost against the current best-known solution, updating the latter
if an improvement is found (lines 9-10).

If the node is incomplete, the algorithm generates feasible child
nodes representing possible next assignments of operators, consid-
ering current scheduling constraints (lines 12-13). Each feasible
child node undergoes a cost estimation procedure (line 13). Nodes
whose estimated cost exceeds the current best-known upper bound
are discarded early, reducing unnecessary exploration (lines 14-15).

The process repeats until all promising solutions have been ex-
plored or pruned, ultimately returning the optimal scheduling solu-
tion (line 16).

3.4 Search Space

Our method considers multiple splitting strategies at the operator
level, where each operator has a maximum of K possible splits,
resulting in a combinational complexity of O(K |Vé|). At the de-
vice level, each resulting sub-operator needs to be mapped onto
one of the available devices in |Vp|, adding another layer of com-
plexity, up to O(|Vp|P), where p is the number of sub-operators.
Furthermore, scheduling and communication sequences must be

168

APNET 2025, August 07-08, 2025, Shang Hai, China

Algorithm 1: Parallel Branch-and-Bound Search

Function Initialize():
Read input graphs, devices, constraints;
Create root node Nyoot (all operators unassigned);
best UB « +oco, best_solution « 0;
(Optional) Greedy initialization for best_solution,
best_UB;
B PQ « PriorityQueue(), PQ.push(Nroot);
Function ParallelSearch(PQ):
while PQ # 0 do
N « PQ.pop();
if N is complete solution and F(N) < best_UB then
best_solution < N, best_UB « F(N);
continue;
for each feasible child N pijy of N do
Estimate cost F(Nghild);
if F(N_piq) < best_UB then
| PQ.push(Nepia);

return best_solution;

arranged temporally, which causes the overall search space to grow
exponentially.

To cope with this immense search space, we first apply con-
straints to eliminate infeasible choices. Subsequently, heuristic rules
are utilized to effectively reduce the initial search scope, such as
presetting initial search points based on multi-edge graph struc-
tures and GPU performance. Additionally, techniques such as multi-
threading can be employed to concurrently simulate and evaluate
multiple scenarios, significantly accelerating the search process.

4 Evaluation

We use SimAl to evaluate the effectiveness of our proposed ap-
proach. The evaluation considers two scenarios: heterogeneous
computation and dynamic network conditions.

Environment Setup. Specifically, we utilize SimAI to simulate
task execution times by leveraging the simulated execution results
to guide the parameter optimization. SimAI’s AIOB invokes CUDA
kernel simulations for three distinct real GPUs. Subsequently, the
AICB module generates workloads for further simulations and
analyses. The GPUs used in this study are as follows:

o RTX4090D: Features 14,592 CUDA cores based on the Ada
Lovelace architecture, 114 Streaming Multiprocessors (SMs), a
boost frequency of 2.52 GHz, 24 GB GDDR6X memory, and fab-
ricated using TSMC’s 5nm process.

e 120: Equipped with 11,776 CUDA cores based on the Ada
Lovelace architecture, 92 SMs, a boost frequency of 2.52 GHz, 48
GB GDDR6 memory, and also utilizes TSMC’s 5nm process.

e V100: Contains 5,120 CUDA cores based on the Volta architecture,
80 SMs, a boost frequency of 1.38 GHz, 32 GB HBM memory, and
is manufactured using TSMC’s 12nm process.

Models and Baselines. To demonstrate that our approach ef-
fectively identifies efficient plans, we evaluate four representative
LLMs: LLaMA_7B, GPT_13B, GPT_22B, and GPT_175B. We compare

APNET 2025, August 07-08, 2025, Shang Hai, China

Ruilong WU, Xinjiao Li, Yisu Wang, Xinyu Chen, and Dirk Kutscher

Megatron Our Method Megatron Our Method 1GB 100GB
17)30 oo 128.97 1.0 1.08
27.04 76,69 2 - 1.02
£ €120 210 0.9
F
0.80
g 20 GE) 100 50.8 0.74 0.73
iz i= 80 E o6
'E 15 '; §0 6
60 w
S0 i) 00.4
= = 40 3
3 5.07 5.33 523 3 27.47 ©
Q5 4.97 8 20 19.64 0.2
X 184 178 x 662, o) 172 5, 7.54 «
Woo W o ' 0.0
7B 13B Z.ZB 175B 7B 13B 2.28 175B . 7B 13B 2.28 175B
Model Size Model Size Model Size

(a) RTX4090D and L20 GPUs

(b) RTX4090D and V100 GPUs

(c) Impact of network bandwidth and parallel strategies

Figure 6: Comparison of execution times for training one epoch under heterogeneous computing devices and dynamic network
conditions: (a) RTX4090D combined with L20 GPUs, (b) RTX4090D combined with V100 GPUs, and (c) relative execution times
for different tensor parallelism (TP) sizes under varying network bandwidth conditions.

our method with Megatron using its default configuration as a
baseline. We consider two evaluation scenarios: heterogeneous
computation and dynamic network conditions.

4.1 Scenario 1: Heterogeneous Computation.

We evaluate the performance on clusters comprising 8, 16, 32, and
256 nodes (each containing an equal number of two GPU types)
under conditions of both similar and significantly different device
performance. Although the RTX4090D and L20 GPUs originate
from the same wafer, differences in the enabled functional modules
result in minor performance variations. As shown in Figure 6(a),
compared with conventional task allocation with equal compu-
tational workloads, our approach achieves approximately 1.01 to
1.03 times better performance than the general-purpose Megatron
framework by utilizing layer-level task assignment.

For environments with substantial performance disparities, such
as integrating the latest RTX4090D GPUs with older V100 GPUs,
significant differences in the computation times exist. Conse-
quently, our method substantially enhances performance, achieving
speedups ranging from approximately 1.74 to 4.69 times compared
with Megatron, as illustrated in Figure 6(b).

4.2 Scenario 2: Dynamic Network Conditions.

We evaluate the execution time for training one epoch across dif-
ferent parallel strategies under varying network conditions using
8, 16, 64, and 256 V100-32G-PCle GPUs. Figure 6(c) shows the ab-
solute execution time under different network conditions when
comparing lower TP sizes to higher TP sizes. Specifically, we set TP
sizes of 2 versus 4 for the 7B model, 4 versus 8 for the 13B model, 8
versus 16 for the 22B model, and 16 versus 32 for the 175B model.

We observe that, for models with fewer parameters, a lower net-
work bandwidth increases the execution time by approximately 25%
to 52%. This indicates that communication overhead significantly
slows down training under low-bandwidth conditions, with higher
TP sizes causing even greater increases in the execution time. Con-
versely, when the network bandwidth is not constrained, larger TP
sizes still slightly increase the execution time by approximately 2%

169

to 8%. However, for very large models, the overhead introduced by
higher TP parallelism is offset by the non-overlapping communica-
tion time inherent in pipeline parallelism (PP).

5 Limitation

Our study has the following two limitations:

First, due to simulator constraints, we are currently limited to
parallel strategies defined by the Megatron-LM. In future work, we
plan to implement a native operator-level simulator rather than
relying on coarse-grained model-level task assignments.

Second, to accommodate variable-length operators, the search
space grows exponentially. Even with multithreading, it is difficult
for the CPU to match the search efficiency of existing methods. We
plan to leverage FPGA-based acceleration for simulations in future
work.

6 Conclusion

This study proposes a multi-edge abstraction to address task exe-
cution for LLMs under realistic dynamic network conditions and
heterogeneous computing environments. Through experiments, we
demonstrate that operator splitting effectively reduces task exe-
cution times in heterogeneous settings. Our method significantly
outperforms existing frameworks, achieving notable speedups of
up to 4.69 times. Moreover, the network conditions significantly in-
fluence the search results for parallel strategies. Under varying net-
work environments, newly identified parallel strategies can reduce
execution times by up to 52% compared with previously optimal
strategies.

Acknowledgments

This work was supported by the Guangdong Provincial Project
(2023QN10X048, 2023ZT10X009), the Guangzhou Municipal
Key Laboratory on Future Networked Systems (2024A03]0623),
the Guangzhou Municipal Science and Technology Project
(2023A03J0011), and the Natural Science Foundation of China
(U23A20339). We thank the support from PulseBeam. Xinyu Chen
and Dirk Kutscher are corresponding authors.

Rethinking Dynamic Networks and Heterogeneous Computing with Automatic Parallelization

References
[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

(3

[10

[11

[12

(13

[14

(15

[16

(17

[18

[19

=

]

]

]

]

]

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578—
594. https://www.usenix.org/conference/osdi18/presentation/chen

NVIDIA Corporation. 2017. NVIDIA DGX-1 System Architecture Whitepa-
per. https://www.azken.com/images/dgx1_images/dgx1-system-architecture-
whitepaper1.pdf. Accessed: 2025-03-10.

NVIDIA Corporation. 2017. NVIDIA DGX-1 with Tesla V100 System Archi-
tecture. https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-
whitepaper.pdf. Accessed: 2025-03-10.

NVIDIA Corporation. 2020. NVIDIA A100 Tensor Core GPU Architec-
ture. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf. Accessed: 2025-03-10.

NVIDIA Corporation. 2023. NVIDIA DGX H100 System User Guide. https:
//docs.nvidia.com/dgx/dgxh100-user-guide/dgxh100-user-guide.pdf. Accessed:
2025-03-10.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
arXiv:2205.14135 [cs.LG] https://arxiv.org/abs/2205.14135

Shiging Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan
Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021. DAPPLE: A pipelined
data parallel approach for training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 431-445.
Yangyang Feng, Minhui Xie, Zijie Tian, Shuo Wang, Youyou Lu, and Jiwu Shu.
2023. Mobius: Fine tuning large-scale models on commodity gpu servers. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 489-501.

Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, and Christos Kozyrakis.
2024. ReCycle: Resilient Training of Large DNNs using Pipeline Adaptation. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles.
211-228.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

Muyan Hu, Ashwin Venkatram, Shreyashri Biswas, Balamurugan Marimuthu,
Bohan Hou, Gabriele Oliaro, Haojie Wang, Liyan Zheng, Xupeng Miao, Jidong
Zhai, and Zhihao Jia. 2024. Optimal Kernel Orchestration for Tensor Programs
with Korch. In Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 3
(ASPLOS ’24). ACM, 755-769. doi:10.1145/3620666.3651383

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui W, et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems 32 (2019).

Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury. 2023.
Oobleck: Resilient distributed training of large models using pipeline templates.
In Proceedings of the 29th Symposium on Operating Systems Principles. 382-395.
Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP '19). Association
for Computing Machinery, New York, NY, USA, 47-62. doi:10.1145/3341301.
3359630

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A unified architecture for accelerating distributed {DNN} training in
heterogeneous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 463—-479.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, et al. 2023.
Tpu v4: An optically reconfigurable supercomputer for machine learning with
hardware support for embeddings. In Proceedings of the 50th annual international
symposium on computer architecture. 1-14.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael
Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2023. Reducing activation
recomputation in large transformer models. Proceedings of Machine Learning and

170

[20

[21

[22

[23

[24

[25

I
S

[27

[28

[29

@
=

[31

[32

[33

(34]

[35

[36

[37

w
&,

[39

APNET 2025, August 07-08, 2025, Shang Hai, China

Systems 5 (2023), 341-353.

Seonho Lee, Amar Phanishayee, and Divya Mahajan. 2025. Forecasting GPU
Performance for Deep Learning Training and Inference. In Proceedings of the
30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (Rotterdam, Netherlands) (ASPLOS
’25). Association for Computing Machinery, New York, NY, USA, 493-508. doi:10.
1145/3669940.3707265

Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. 2022. Amp: Automatically
finding model parallel strategies with heterogeneity awareness. Advances in
Neural Information Processing Systems 35 (2022), 6630-6639.

Shigang Li and Torsten Hoefler. 2021. Chimera: efficiently training large-scale
neural networks with bidirectional pipelines. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-14.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chenggi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437 (2024).

Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. 2023. Hanayo:
Harnessing wave-like pipeline parallelism for enhanced large model training
efficiency. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-13.

Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang,
and Bin Cui. 2022. Galvatron: Efficient transformer training over multiple gpus
using automatic parallelism. arXiv preprint arXiv:2211.13878 (2022).

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the international
conference for high performance computing, networking, storage and analysis. 1-15.
Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James
Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021. The Design
Process for Google’s Training Chips: TPUv2 and TPUv3. IEEE Micro 41, 2 (2021),
56-63. doi:10.1109/MM.2021.3058217

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730-27744.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1,8 (2019), 9.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1-16.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 3505-3506.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-Yeon Lee, Goeun Kim,
Dongseob Kim, Youngtaek Kim, Mohd Muzzammil, and Myeongjae Jeon. 2024.
Metis: Fast Automatic Distributed Training on Heterogeneous {GPUs}. In 2024
USENIX Annual Technical Conference (USENIX ATC 24). 563-578.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).
Xizheng Wang, Qingxu Li, Yichi Xu, Gang Lu, Dan Li, Li Chen, Heyang Zhou,
Linkang Zheng, Sen Zhang, Yikai Zhu, et al. [n. d.]. SimAI Unifying Architecture
Design and Performance Tunning for Large-Scale Large Language Model Training
with Scalability and Precision. ([n.d.]).

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (April 2009), 65-76. doi:10.1145/1498765.1498785

Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunan Shi, Jianan Ji, Kit Ao, Praveen
Velliengiri, Xupeng Miao, Oded Padon, and Zhihao Jia. 2024. Mirage: A Multi-
Level Superoptimizer for Tensor Programs. arXiv:2405.05751 [cs.LG] https:
//arxiv.org/abs/2405.05751

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.azken.com/images/dgx1_images/dgx1-system-architecture-whitepaper1.pdf
https://www.azken.com/images/dgx1_images/dgx1-system-architecture-whitepaper1.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/dgx/dgxh100-user-guide/dgxh100-user-guide.pdf
https://docs.nvidia.com/dgx/dgxh100-user-guide/dgxh100-user-guide.pdf
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://doi.org/10.1145/3620666.3651383
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3669940.3707265
https://doi.org/10.1145/3669940.3707265
https://doi.org/10.1109/MM.2021.3058217
https://doi.org/10.1145/1498765.1498785
https://arxiv.org/abs/2405.05751
https://arxiv.org/abs/2405.05751
https://arxiv.org/abs/2405.05751

APNET 2025, August 07-08, 2025, Shang Hai, China

[40]

[41]

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habi-
tat: A Runtime-Based Computational Performance Predictor for Deep Neural
Network Training. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 503-521. https://www.usenix.org/conference/atc21/
presentation/yu

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. Pytorch fsdp:

171

[42

Ruilong WU, Xinjiao Li, Yisu Wang, Xinyu Chen, and Dirk Kutscher

experiences on scaling fully sharded data parallel. arXiv preprint arXiv:2304.11277
(2023).

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. 2022.
Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep
learning. In 16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). 559-578.

https://www.usenix.org/conference/atc21/presentation/yu
https://www.usenix.org/conference/atc21/presentation/yu

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Performance Heterogeneity
	2.2 Dynamic Networks
	2.3 Operation Fusion and Split

	3 Design
	3.1 Multi-Edges Assumption
	3.2 Problem Formulation
	3.3 Algorithm
	3.4 Search Space

	4 Evaluation
	4.1 Scenario 1: Heterogeneous Computation.
	4.2 Scenario 2: Dynamic Network Conditions.

	5 Limitation
	6 Conclusion
	Acknowledgments
	References

