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Abstract—Neural Networks (NNs) have achieved break-
throughs in computer vision and natural language processing.
However, modern models are computationally expensive, with
floating-point operations posing a major bottleneck. Floating-
point approximation, such as Mitchell’s logarithm, enables
floating-point multiplication using simpler integer additions,
thereby improving hardware efficiency. However, its practical
adoption is hindered by challenges such as precision degradation,
efficient hardware integrations, and management of trade-offs
between accuracy and resource efficiency.

In this paper, we propose a hardware-efficient down-sampling-
based compensation method to mitigate precision loss and a flexi-
ble bias mechanism to accommodate diverse data distributions in
NN models. Building on this foundation, we design configurable
systolic arrays optimized for NN accelerators. To further support
practical adoption, we introduce April, a co-design framework
that balances the accuracy and resource usage of generated syn-
thesizable systolic arrays. Our FPGA-based evaluations demon-
strate that April-generated systolic arrays reduce root mean
square error (RMSE) by up to 96% and achieve 34%-52% area
reduction even compared to INT8-based implementations while
maintaining comparable or improved model accuracy. Our design
is open-sourced at https://github.com/CLabGit/April.

Index Terms—Floating-point approximation, FPGAs

I. INTRODUCTION

Neural Networks (NNs), including convolutional neural
networks [1]–[3], vision transformers [4]–[6], and large lan-
guage models [7]–[9], have achieved state-of-the-art perfor-
mance across various applications, such as computer vision
and natural language processing. However, their exceptional
performance comes at the cost of high computational com-
plexity, with floating-point multiplications emerging as a major
bottleneck. While floating-point arithmetic ensures numerical
precision, its implementation demands significant chip area.

Recent advancements in floating-point approximation have
demonstrated great potential to reduce the hardware costs
of multiplication operations. Based on Mitchell’s logarithm
approximation [10] that a floating-point number can be in-
terpreted as a number in a logarithmic number system, re-
cent works [11]–[13] theoretically prove that floating-point
multiplication can be performed with integer additions. This
suggests that expensive floating-point multiplication units can
be replaced with simpler integer addition units, unlocking sub-
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stantial resource-saving opportunities for heavy computations
of NNs.

However, a significant gap remains in applying the
aforementioned floating-point multiplication approximation
(FPMA) to real hardware. First, the transition from a floating-
point number to a logarithmic number inevitably introduces
precision degradation. As a result, an effective and hardware-
efficient compensation solution is essential for maintaining the
model’s accuracy. Second, comprehensive hardware designs
for NNs that seamlessly integrate both approximation and
compensation methods are necessary to quantitatively evaluate
the benefits of FPMA in real-world settings. Third, since
compensation methods inherently involve trade-offs between
precision and hardware costs, a flexible framework is needed
to guide these design decisions based on application-specific
requirements. In this paper, we address these challenges and
make the following contributions:
• We propose a hardware-efficient down-sampling-based com-

pensation method, together with a flexible bias mechanism
to FPMA to improve model accuracy.

• We develop configurable systolic arrays that integrate pro-
posed accuracy-improved FPMA.

• We introduce April, a framework that balances model accu-
racy and hardware cost for systolic array generation.

• Extensive FPGA evaluations demonstrate that April gen-
erated systolic array (FP8) reduces RMSE by up to 96%
and saves 34%-52% hardware resources compared to INT8-
based systolic arrays while offering better model accuracy.

II. BACKGROUND AND MOTIVATION

A. Approximating FP Multiplication with Integer Addition

According to the IEEE 754-2019 Standard [14], a normal-
ized FP (Floating-Point) number x can be represented as,

x = (−1)Sx × 2Ex−b × (1 +Mx), 0 ≤ Mx < 1, (1)

with Sx as a sign bit, Ex as an WE-bit exponent, b =
2WE−1 − 1 as a bias, and Mx as a WM -bit mantissa without
the leading one. Although FP provides a wide dynamic range,
operations like multiplication are hardware-intensive due to
the complexity of managing the sign, exponent, mantissa, and
additional steps like rounding and normalization.

While integer-based quantization has been widely used
to reduce computation overhead by replacing floating-point
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multiplication with simpler integer multiplication [15], [16],
Gustafsson et al. [11] further simplifies FP multiplication by
approximating it as an integer addition. Specifically, based
on Mitchell’s logarithmic approximation [10], a floating-point
number x can be mapped to the logarithmic domain as:

log2(x) ≈ (Ex − b) +Mx = X −B, (2)

where X = {Ex,Mx} represents the binary form of x, and
B = b ≪ WM is the shifted bias. While approximation
from log2(1 +Mx) to Mx introduces some errors, it enables
the Floating-Point Multiplication Approximation (FPMA). The
binary representation of the multiplication result R can be
expressed as:

R ≈ log2(x× y) +B = X + Y −B, (3)

where X and Y denote the binary representations of the two
operands. This method simplifies the complexity of floating-
point multiplication by reducing it to integer addition.

B. Challenges of Applying FPMA to NN Accelerators

Approximation techniques, while promising for improving
hardware efficiency, often result in precision loss [17], [18],
which can severely degrade model accuracy; therefore, we first
study the impact of FPMA on model accuracy. We compared
the accuracy of MobileNetV2 and other models under the orig-
inal FP8 data type (golden accuracy) and various approximated
FP8 formats. Table I summarizes the results. The results reveal
that naively applying FPMA can lead to unacceptable accuracy
drops. For example, MobileNetV2’s accuracy decreases from
66.28% (golden) to 58.37% under FP8(E4M3), representing an
8% reduction. Similarly, FastViT-t12 suffers a drastic decline
from 76.59% to 30.47% under FP8(E3M4). While some
configurations, such as FP8(E2M5) with a mantissa width
of 2, introduce no error, others exhibit significant accuracy
degradation, particularly with wider mantissa bit-widths. These
findings highlight two critical challenges in applying FPMA
to hardware accelerators for neural networks.

TABLE I: Top-1 accuracy comparison of MobileNetV2,
FastViT, DeiT-T and MobileOne on the ImageNet-1k dataset,
with original FP8 or FPMA.

NN Model Accuracy E2M5 E3M4 E4M3 E5M2

MobileNetV2 [19] ‡Golden 71.08% 70.30% 66.28% 48.11%
FPMA 64.65% 62.76% 58.37% †48.11%

FastViT-t12 [20] ‡Golden 65.38% 76.59% 74.04% 56.30%
FPMA 0.64% 30.47% 67.02% †56.30%

DeiT-T [21] ‡Golden 68.40% 69.10% 68.02% 64.54%
FPMA 0.08% 0.27% 66.75% †64.54%

MobileOne [22] ‡Golden 67.74% 67.84% 41.63% 0.46%
FPMA 3.52% 16.94% 14.58% †0.46%

† FPMA will not introduce error for M2 (mantissa width of 2) [23].
‡ Golden accuracy on FP8 obtained with post-training quantization [24].

Challenge 1: Hardware efficient error correction for
high model accuracy. The accuracy loss introduced by
FPMA, as shown in Table I, highlights the need for practi-
cal and hardware-efficient error correction methods. Existing
works [11], [23] explore fine-grained or single-value com-
pensation methods to mitigate precision loss. However, they

either suffer from high hardware costs or insufficient accuracy.
Balancing effective error correction with minimal hardware
overhead remains a key challenge for deploying FPMA in
neural network accelerators.
Challenge 2: Efficient NN hardware design with FPMA. To
our knowledge, no existing hardware accelerators incorporate
FPMA for NNs, leaving a significant gap in architecture
design. On the other hand, error correction usually introduces
trade-offs between computational efficiency and model accu-
racy. Consequently, hardware design with FPMA introduces
new architectural considerations, such as selecting the right
error correction granularity based on application requirements,
making hardware support of FPMA nontrivial.

C. Our Solutions Toward Practical FPMA for NNs

Solution 1: Improved Precision with hardware-efficient
compensation and flexible bias. To address the precision loss
introduced by FPMA, we propose a hardware-efficient com-
pensation method combined with flexible bias. The compen-
sation mechanism uses localized averaging through a down-
sampling approach, reducing hardware costs while maintaining
accuracy. This method dynamically adjusts the error com-
pensation window size to balance precision and efficiency.
Additionally, a flexible bias mechanism allows adaptive bias
settings for activations and weights to accommodate their dis-
tinct distribution patterns. This ensures a wider representable
range and significantly enhances model accuracy, overcoming
the limitations of fixed-bias FPMA designs.
Solution 2: A model accuracy-aware framework for
FPMA-enabled systolic array generation. We present April,
a co-design framework for generating systolic arrays with
accuracy-enhanced FPMA. This framework integrates error
correction and format conversion, enabling optimized compen-
sation window sizes and seamless data format adjustments.
It also supports customizable systolic array designs tailored
to user-defined accuracy and hardware cost requirements. By
leveraging April, this solution effectively optimizes the trade-
offs between hardware efficiency and computational accuracy,
offering a practical FPMA integration to NN accelerators.

III. HARDWARE-EFFICIENT ERROR CORRECTION

A. Error Distribution Analysis

To design an effective error correction strategy, we first
analyze the error characteristics in detail. Figure 1 presents the
error distribution of X × Y across approximated FP8 formats
(E4M3, E3M4, and E2M5). Since the error arises solely from
the mantissa (as approximated by log2(1+Mx) ≈ Mx), we
use the mantissa values of X and Y (denoted as Xmant and
Ymant) as coordinates of the heatmap figures. For instance, in
Figure 1a, E4M3 has three mantissa bits, so Xmant and Ymant
range from 0 to 7. Each heatmap enumerates all possible
combinations of Xmant and Ymant for a given data format,
ensuring comprehensive coverage of potential errors. The
heatmap values reflect the difference between the golden and
approximate results at these specific mantissa values and are



measured in units of last place (ulp), a widely adopted metric
for error analysis [11], [25].
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Fig. 1: Visualization of error distribution of X×Y with various
approximated FP8 formats. Values measured in units of the last
place (ulp) given the mantissa values of X and Y .

The analysis reveals three key findings. First, the errors
are nonuniformly distributed, making it difficult to establish
a simple arithmetic relationship between errors and mantissa
values for direct compensation [23]. Second, error values vary
significantly in heatmaps. As a result, applying a constant
compensation value for each Xmant-Ymant combination (i.e., a
point (Xmant, Ymant) in the heatmap) yields poor accuracy [11].
Third, as the number of mantissa bits increases (from E4M3 to
E2M5), the error distribution transitions from sparse to dense.
This leads to fine-grained compensation (i.e., each Xmant-Ymant
combination has an individual compensation value) impracti-
cal due to the high on-chip storage cost required [23].

Despite these challenges, we identify an opportunity in
the strong locality of the error distribution. Adjacent error
data points (Xmant, Ymant) often exhibit similar values within
small regions of the heatmap. This suggests that errors in
these regions can be compensated with a single representative
value, significantly reducing hardware complexity and stor-
age requirements. Leveraging this observation, we propose a
down-sampling-based compensation method that exploits the
locality of the error distribution, providing a hardware-efficient
solution for FPMA error correction.

B. Down-Sampling-Based Compensation Method

We propose a novel down-sampling-based compensation
method that balances numerical accuracy and hardware cost.
The core idea is to average the errors of mantissa com-
binations (Xmant,Ymant) within a defined window and apply
the averaged value as compensation. Smaller window sizes
provide higher compensation accuracy, while larger windows
trade some accuracy for better hardware efficiency. Further-
more, our approach is versatile and can be effectively applied
to any FP format such as BF16, FP16, and FP32, as it is
determined by the data format and is independent of the input
data distribution.

Figure 2 provides a step-by-step visual representation of
how the original error heatmap of E3M4 is transformed
into a compensated version through down-sampling. First,
the original error map is divided into K × K windows,
where K = 2k and k is the down-sampling factor. A larger
k corresponds to smaller window sizes, allowing for finer
granularity. In the example shown in Figure 2a, k = 3 results
in 23 × 23 windows, each of size 2 × 2. Second, the errors

within each window are averaged to generate a down-sampled
error heatmap, as illustrated in Figure 2b, where the size is
reduced to K ×K. Third, each Xmant-Ymant combination uses
the most significant k bits of Xmant and Ymant to lookup the
averaged value for compensation. Figure 2c shows error distri-
bution after applying the down-sampling-based compensation
method, demonstrating significantly reduced errors.
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Fig. 2: Transformation of the original error heatmap of E3M4
using the down-sampling-based compensation method.

This approach only requires storing the compact down-
sampled heatmap, minimizing hardware demands while main-
taining sufficient compensation accuracy. The trade-off be-
tween hardware efficiency and numerical precision can be
tuned by adjusting the k, which also served as a compensation
factor. The compensation factor k is usually chosen within
the range [3,WM ], where WM is the total bit width of
the mantissa. When WM = 2, no error is introduced by
FPMA [23]. For practical implementations, k is typically set
to k ≥ 3 to effectively capture the error distribution while
minimizing the index size. On current FPGA architectures,
with k = 3, the down-sampled heatmap with the size of 8× 8
can be stored in one LUT6 [26] that has 26 entries. If k is
increased, additional LUT6 units are required to accommodate
the larger input space.
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C. Enabling Flexible Bias to FPMA

For FP formats, the bias (b, as shown in Equation 1) not
only simplifies the representation of exponents but also enables
flexibility to adjust the representation range of FP numbers.
The original FPMA [11] uses a uniform bias, providing the
same range of representable numbers for inputs and outputs
(i.e., X , Y , and R). However, the distributions of activations
and weights of NNs can vary significantly. Figure 3 illustrates
the distribution of activations (orange) and weights (purple) in



a linear layer of MobileNetV2 and the numerical space of the
E3M4 FP8 format under different bias values (b = 5, 6, 7, 8),
all in absolute value. The horizontal axis represents the numer-
ical range of FP numbers determined by the bias, while the
vertical axis shows the percentage of activations and weights
within specific ranges. The results show that bias b = 5 is most
suitable for activations, as their distribution aligns closely with
the representable range, whereas b = 8 best accommodates
weights for the same reason. Selecting an appropriate bias
for one often leads to suboptimal representation for the other,
potentially degrading model accuracy. This motivates the need
for flexible or adaptive bias strategies.

In this paper, we propose a flexible bias design for FPMA
and provide theoretical proof of its correctness. By scaling the
original input x with a factor of 2b/2b1 , Equation 2 adjusts to:

log2(x×
2b

2b1
)= log2(2

Ex−b+b−b1 × (1+Mx))

=(Ex−b1)+log2(1+Mx) ≈ (Ex−b1)+Mx

= X −B1,

(4)

where B1 = b1 <<WM . This adjustment enables the binary
representation X to represent a custom value space scaled by
2b/2b1 . Similarly, for scaling y by 2b/2b2 , we derive:

log2(y×
2b

2b2
) ≈ Y −B2. (5)

When the two scaled input operands are multiplied, their
product can be expressed as:

log2(x× 2b

2b1
× y × 2b

2b2
) = log2(x× y × 22b

2b1+b2
)

= log2(x× y × 2b

2b1+b2−b
) ≈ R−B3,

(6)

where B3 = (b1 + b2 − b)<<WM = B1+B2−B is used for
the replacement of B in the FPMA calculation. This flexible
bias adjustment ensures that the computation remains accurate
and faithful to the scaled value space, enabling FPMA to adapt
seamlessly to diverse data range distributions in NNs.

IV. ACCURACY-AWARE SYSTOLIC ARRAY GENERATION

A systolic array is a hardware architecture commonly
used for accelerating matrix operations, particularly in the
linear layers of neural networks. By integrating accuracy-
improved FPMA into a systolic array, our design largely
reduces hardware complexity while maintaining high model
accuracy. Furthermore, we propose April, a comprehensive
framework that determines the optimal window size for error
compensation, performs data format conversion, and generates
a synthesizable systolic array tailored to the user’s model
accuracy and hardware cost requirements.

A. Integrating Accuracy-Improved FPMA to Systolic Arrays

Figure 4 illustrates the multiplication process of x×y using
three methods: standard floating-point multiplication (Golden),
original FPMA, and the proposed accuracy-improved FPMA,
demonstrated in the FP8(E3M4) format. While the original

FPMA performs multiplication using only two integer addi-
tions, it introduces a noticeable error (8.5golden vs. 7.75). In
contrast, the accuracy-improved FPMA compensates for this
error through an additional table lookup operation. Specifi-
cally, the most significant three bits (MSBs) of the mantissa
of Xmant and Ymant are extracted and used as indices to
query the precomputed error compensation table. The retrieved
compensation value is then added to the result, correcting
the error and producing an accurate output (r′′ = 8.5). This
demonstrates that our approach effectively reduces errors with
minimal additional computational and hardware overhead.

Figure 5 illustrates the proposed configurable systolic array
architecture integrated with accuracy-improved FPMA for effi-
cient linear layer computations. It utilizes an output-stationary
dataflow strategy. The systolic array (a) consists of intercon-
nected MAC units that process inputs (Iact,Wght,CascO) and
output results (Oact,PassO), enabling pipelined matrix oper-
ations. Each MAC unit (b) incorporates an optimized FPMA
module that performs lightweight floating-point multiplication
with error compensation and flexible bias. The FPMA module
(c) decomposes inputs (Iact,Wght) into sign, exponent, and
mantissa components, extracts the most significant k bits of
the mantissa, and uses them to query precomputed compen-
sation values stored in LUT6 units. The retrieved values are
directly appended to the lower vacant bits of the flexible bias
(Flexible.B) and then added with Iact and Wght through an
area-efficient ternary adder [27].

B. A Software-Hardware Co-designed Framework - April

The April framework is a hardware-software co-design
solution designed to balance the trade-offs between accuracy
and resource consumption for FPMA-based systolic arrays.
Essentially, given the model accuracy and hardware cost con-
straints from users, the framework could determine the most
suitable compensation factor k and biases for each layer and
generate the synthesizable hardware code for systolic arrays.
Figure 6 outlines its workflow.

Step ➀ involves Flexible Bias Selection, where the frame-
work selects the optimal bias for each tensor. This is achieved
by analyzing the distribution of activation (Iact) and weight
(Wght) values and aligning them with the numerical space of
the floating-point (FP) format. This step ensures accurate and
efficient representation through flexible bias adjustment.
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Step ➁ performs Compensation Table Generation by
generating error compensation tables for various compensation
factors (k) using down-sampling techniques. These precom-
puted tables correct FPMA errors while maintaining hardware
efficiency.

Step ➂ conducts Accuracy Analysis, where neural network
models are simulated with FPMA to evaluate the impact of
different compensation configurations (k = 3, 4, 5, etc.) on
accuracy. This step identifies the optimal trade-off between
accuracy and resource usage, allowing developers to choose
parameters based on their optimization priorities, such as
resource efficiency or accuracy maximization.

Step ➃ involves Hardware Generation. The optimized
compensation table and flexible bias settings are integrated into
the systolic array design. The hardware generator produces
RTL code for systolic arrays, incorporating components such
as the ternary adder, flexible bias logic, and compensation
modules to enable efficient FPMA computation.

The proposed April framework seamlessly integrates model-
level accuracy tuning with hardware design space exploration,
enabling resource-efficient and numerically accurate systolic
arrays for neural network hardware accelerators.

V. EVALUATION

A. Experimental Setup

For accuracy evaluation, experiments were conducted on
NVIDIA GeForce RTX 3090 GPU, Torch 2.4.1, and CUDA
12.6, leveraging an open-source FP8 quantization tool from
Qualcomm [24]. For resource evaluation, designs are im-
plemented on an AMD Alveo U250 Accelerator Card with
1,728K LUTs and 3,456K registers, using Vivado 2022.2.

B. Evaluation on Down-Sampling based Compensation

1) Error Analysis: Table II evaluates the error reduction
capability of the proposed compensation method for FPMA
across formats such as FP8, BF16, and FP16, using met-
rics such as Mean Absolute Error (MeanAbsErr) and Max-
imum Absolute Error (MaxAbsErr) in units of last place
(ulp). The results demonstrate significant error reductions
across all formats, with MeanAbsErr reductions ranging from
74.1% (FP8 E3M4) to 81.1% (FP16 E5M10) and MaxAb-
sErr reductions ranging from 60.0% (FP8 E2M5) to 77.2%
(BF16 E8M7). Errors were fully eliminated for FP8 E4M3
(100% reduction). These results highlight the method’s effec-
tiveness in minimizing errors for improved model accuracy.

TABLE II: Error analysis of the proposed compensation
method across different floating-point formats.

FPMA MeanAbsErr (ulp) MaxAbsErr (ulp)
Formats Base. Comp. Reduction Base. Comp. Reduction

FP8 E5M2 0 0 / 0 0 /
FP8 E4M3 0.36 0 ↓100% 1 0 ↓100%
FP8 E3M4 0.85 0.22 ↓74.1% 3 1 ↓66.6%
FP8 E2M5 1.79 0.48 ↓73.2% 5 2 ↓60.0%
FP12 E5M6 3.62 0.77 ↓78.7% 11 3 ↓72.7%
BF16 E8M7 7.27 1.44 ↓80.2% 22 5 ↓77.2%
FP16 E5M10 58.22 10.98 ↓81.1% 175 52 ↓70.3%

2) Area Analysis: Figure 7 compares area consumption
(LUTs) of original FPMA, the proposed accuracy-optimized
FPMA, and FPMA with fine-grained compensation [23] across
various floating-point (FP) formats. While the overhead of
fine-grained compensation method expands dramatically as
the mantissa width increases, the proposed accuracy-optimized
FPMA exhibits only a linear increase in LUT consumption
relative to the original FPMA baseline, demonstrating efficient
scalability even with higher bit-widths. The additional area
required for compensation remains minimal, ensuring the
design’s area efficiency while maintaining improved compu-
tational accuracy.
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unit implemented with different methods. The compensation
factor k is set to 3 for our accuracy-optimized FPMA.

C. Evaluation on April-generated Systolic Arrays

1) Error Analysis: Figure 8 evaluates the accuracy of
April-generated systolic arrays. Random matrices with values
uniformly distributed in the range [1, 2) were represented in
various formats and multiplied on systolic arrays with different
mantissa widths (M ) and matrix sizes (S = 32, 64, 128).
Results were compared to systolic arrays with original FPMA



(FPMA) using Root Mean Square Error (RMSE). First, April-
generated systolic arrays demonstrate significant error re-
ductions over baselines (FPMA) across all settings. Second,
smaller mantissas (e.g., M3, M4) showed RMSE reductions of
up to 100%, while larger mantissas (e.g., M7, M8) achieved
reductions of up to 96% with larger k.
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Fig. 8: RMSE analysis of matrix multiplication on April-
generated systolic array with various mantissa widths (M),
matrix sizes (S), and compensation factors (k). The baseline
is the systolic array with original FPMA (FPMA).

2) Area Analysis: Table III compares area consumption of
April-generated systolic arrays with INT8 and original FPMA-
based systolic arrays. All configurations are matched in terms
of parallelism and pipeline depth, with DSP usage inten-
tionally avoided, making LUT utilization the primary metric.
The results show that April-generated systolic arrays deliver
significant LUT area reductions across all configurations, with
smaller formats like E5M2 achieving up to 52% reduction
consistently across matrix sizes. Formats with larger mantissas
(e.g., E2M5) result in slightly smaller reductions of 34%-35%,
reflecting a trade-off between hardware cost and precision.

TABLE III: Area (LUT) cost of April-generated (April) and
original FPMA (FPMA) based systolic arrays compared to
INT8-based (INT8) systolic arrays. Vivado strategy is set to
Flow AreaOptimized high, with the frequency of 250MHz.

Formats Mult 16×16 32×32 64×64
INT8 Exact 23808 95303 380291

E5M2
FPMA 11630 46183 184126
April †11630 (↓51%) †46183 (↓52%) †184126 (↓52%)

E4M3
FPMA 13446 52974 210956
April 13774 (↓42%) 53629 (↓44%) 214169 (↓44%)

E3M4
FPMA 13724 55429 221075
April 14241 (↓40%) 57786 (↓39%) 229274 (↓40%)

E2M5
FPMA 14887 59145 236195
April 15662 (↓34%) 62145 (↓35%) 248628 (↓35%)

† FPMA does not introduce errors when mantissa equals 2.

D. End-to-end Model Accuracy Evaluation

The experiment in Figure 9 evaluates the end-to-end top-1
accuracy of four neural networks on the ImageNet-1k dataset
under different configurations, including Golden INT8 (post-
training quantization with INT8), Golden FP8 (post-training
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Fig. 9: Comparison of top-1 accuracy for neural networks on
the ImageNet-1k dataset under different configurations.

quantization with FP8), original FPMA (FPMA), FPMA with
the proposed compensation method (FPMA + Comp), and
the April (i.e., FPMA + Comp + flexible bias) with varying
compensation factor (k = 3, 4, 5).

The results show that original FPMA significantly reduces
accuracy compared to both Golden FP8 and Golden INT8,
highlighting the need for effective error correction. FPMA
with compensation recovers most of the accuracy loss, and the
April framework further improves accuracy, often matching
the Golden FP8 baseline and achieving comparable or better
results than Golden INT8, particularly with larger compensa-
tion factors (e.g., k = 5). Different models exhibit varying
sensitivity to FPMA, with lightweight models like MobileOne
benefiting substantially from the April framework. While
earlier experiments showed significant resource reduction from
accuracy-improved FPMA, these findings confirm its ability to
maintain end-to-end model performance, making it practical
for neural network accelerators.

VI. CONCLUSION

This paper addressed the challenges in adopting FPMA to
neural network accelerators. We proposed accuracy-improved
FPMA with down-sampling-based compensation and flexi-
ble bias methods to mitigate precision loss in FPMA. We
introduced April, a co-design framework that balances ac-
curacy and resource efficiency for systolic array generation.
April-generated systolic arrays demonstrated up to 52% area
reduction compared to INT8-based ones while maintaining
better accuracy, and achieved up to 96% RMSE reduction
compared to the original FPMA, making it a practical and
efficient solution for deploying FPMA in neural network
accelerators. This work bridges the gap between floating-point
approximation and practical hardware implementation.

ACKNOWLEDGMENT

This work is supported by the Guangzhou-HKUST(GZ)
Joint Funding Program (No.2025A03J3568). We also thank the
AMD Heterogeneous Accelerated Compute Cluster (HACC)
Program [28] for providing access to hardware resources.



REFERENCES

[1] Z. Liu et al., “A convnet for the 2020s,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp.
11 976–11 986.

[2] X. Ding et al., “Repvgg: Making vgg-style convnets great again,”
2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 13 728–13 737, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:231572790

[3] M. Tan et al., “Efficientnetv2: Smaller models and faster training,”
in International conference on machine learning. PMLR, 2021, pp.
10 096–10 106.

[4] A. Vaswani et al., “Attention is all you need,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

[5] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” ArXiv, vol. abs/2010.11929, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:225039882

[6] Z. Liu et al., “Swin transformer: Hierarchical vision transformer
using shifted windows,” 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 9992–10 002, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232352874

[7] T. Brown et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[8] H. Touvron et al., “Llama 2: Open foundation and fine-tuned
chat models,” ArXiv, vol. abs/2307.09288, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259950998

[9] A. Liu et al., “Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model,” arXiv preprint arXiv:2405.04434, 2024.

[10] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512–
517, 1962.

[11] O. Gustafsson et al., “Approximate floating-point operations with integer
units by processing in the logarithmic domain,” in 2021 IEEE 28th
Symposium on Computer Arithmetic (ARITH). IEEE, 2021, pp. 45–
52.

[12] A. Kosson et al., “Multiplication-free transformer training via piecewise
affine operations,” Advances in Neural Information Processing Systems,
vol. 36, pp. 8208–8223, 2023.

[13] T. Mogami, “Deep neural network training without multiplications,”
2020. [Online]. Available: https://arxiv.org/abs/2012.03458

[14] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pp. 1–84, 2019.

[15] A. Gholami et al., “A survey of quantization methods for efficient neural
network inference,” ArXiv, vol. abs/2103.13630, 2021.

[16] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[17] M. Imani et al., “Approxlp: Approximate multiplication with lineariza-
tion and iterative error control,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC ’19, 2019.

[18] C. Chen et al., “Pam: A piecewise-linearly-approximated floating-point
multiplier with unbiasedness and configurability,” IEEE Transactions on
Computers, vol. 71, no. 10, pp. 2473–2486, 2022.

[19] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[20] P. K. A. Vasu et al., “Fastvit: A fast hybrid vision transformer using
structural reparameterization,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 2023, pp. 5785–5795.

[21] H. Touvron et al., “Training data-efficient image transformers & distilla-
tion through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[22] P. K. A. Vasu et al., “Mobileone: An improved one millisecond mobile
backbone,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2023, pp. 7907–7917.

[23] T. Lindberg et al., “On approximate 8-bit floating-point operations using
integer operations,” arXiv preprint arXiv:2406.18441, 2024.

[24] A. Kuzmin et al., “Fp8 quantization: The power of the exponent,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 14 651–
14 662, 2022.

[25] J.-M. Muller, “On the definition of ulp(x),” 2005. [Online]. Available:
https://api.semanticscholar.org/CorpusID:264519989

[26] “Amd fpga advantages over competing legacy lut4 architectures,”
AMD, Tech. Rep., 2024. [Online]. Available: https://docs.amd.com/v/u/
en-US/wp558-amd-lut6

[27] M. Kumm et al., “Multiple constant multiplication with ternary adders,”
in 2013 23rd International Conference on Field programmable Logic
and Applications. IEEE, 2013, pp. 1–8.

[28] (2025) Heterogeneous accelerated compute cluster (HACC) at NUS.
Https://xacchead.d2.comp.nus.edu.sg/.

https://api.semanticscholar.org/CorpusID:231572790
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:232352874
https://api.semanticscholar.org/CorpusID:259950998
https://arxiv.org/abs/2012.03458
https://api.semanticscholar.org/CorpusID:264519989
https://docs.amd.com/v/u/en-US/wp558-amd-lut6
https://docs.amd.com/v/u/en-US/wp558-amd-lut6

	Introduction
	Background and Motivation
	Approximating FP Multiplication with Integer Addition
	Challenges of Applying FPMA to NN Accelerators
	Our Solutions Toward Practical FPMA for NNs

	Hardware-Efficient Error Correction
	Error Distribution Analysis
	Down-Sampling-Based Compensation Method
	Enabling Flexible Bias to FPMA

	Accuracy-aware Systolic Array Generation
	Integrating Accuracy-Improved FPMA to Systolic Arrays
	A Software-Hardware Co-designed Framework - April

	Evaluation
	Experimental Setup
	Evaluation on Down-Sampling based Compensation
	Error Analysis
	Area Analysis

	Evaluation on April-generated Systolic Arrays
	Error Analysis
	Area Analysis

	End-to-end Model Accuracy Evaluation

	Conclusion
	References

