Check for
Updates

Graphitron: A Domain Specific Language for
FPGA-Based Graph Processing Accelerator Generation

Xinmiao Zhang
zhangxinmiao20s@ict.ac.cn
SKLP, Institute of Computing
Technology, CAS
University of Chinese Academy of
Sciences
Beijing, China

Xinyu Chen
xinyuchen@hkust-gz.edu.cn
Hong Kong University of Science and
Technology (Guangzhou)
Guangzhou, Guangdong, China

Abstract

Due to hardware customization capabilities, FPGA-based
graph processing accelerators achieve significantly higher
energy efficiency than many general-purpose computing
engines. However, designing these accelerators remains a
substantial challenge for high-level users. To overcome the
programming barrier, FPGA-based accelerator design frame-
works on top of generic graph processing programming mod-
els have been developed to automate accelerator generation
through pre-built templates. However, they often tightly cou-
ple graph processing algorithms, programming models and
processing paradigms, and accelerator architectures, which
severely limits the expression scope of the algorithms and
may also restrict the performance when the generated accel-
erators fail to suit dynamic processing patterns of the graph
processing algorithms.

In this work, we propose Graphitron, a domain-specific
language (DSL) that enables the automatic generation of
FPGA-based graph processing accelerators without engaging
with the complexities of low-level FPGA designs. Graphitron
defines vertices and edges as primitive data types and en-
ables users to implement graph processing algorithms by
performing various functionalities on top of these primi-
tive data, which greatly eases the algorithm descriptions for

“Corresponding Author

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

LCTES ’25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1921-9/25/06
https://doi.org/10.1145/3735452.3735533

Zheng Feng
fengzheng@ict.ac.cn
SKLP, Institute of Computing
Technology, CAS
University of Chinese Academy of
Sciences
Beijing, China

Lei Zhang
zlei@ict.ac.cn
SKLP, Institute of Computing
Technology, CAS
University of Chinese Academy of
Sciences
Beijing, China

28

Shengwen Liang
liangshengwen@ict.ac.cn
SKLP, Institute of Computing
Technology, CAS
University of Chinese Academy of
Sciences
Beijing, China

Cheng Liu*
liucheng@ict.ac.cn
SKLP, Institute of Computing
Technology, CAS
University of Chinese Academy of
Sciences
Beijing, China

high-level users. During compilation, the graph processing
functions are naturally classified into either a vertex-centric
processing paradigm or an edge-centric processing paradigm
according to the target data types, enabling the generation
of accelerator kernels of different characteristics. In addi-
tion, because of the explicit binding between the graph pro-
cessing functions and the data types, the Graphitron com-
piler can automatically infer the computing and memory
access patterns of each processing function within graph
processing algorithms and apply corresponding hardware
optimizations such as pipelining, data shuffling, and caching.
Basically, graph semantic information can be utilized to
guide algorithm-specific customization of resulting accel-
erators for higher performance. Our experiments show that
Graphitron can generate accelerators for a broader range of
graph processing algorithms than prior template-based gen-
eration frameworks. Moreover, the accelerators produced
by Graphitron achieve performance comparable to, and in
some cases exceeding, that of existing frameworks when the
combined programming paradigms are beneficial from an
algorithmic perspective.

CCS Concepts: « Software and its engineering — Do-
main specific languages; - Computer systems organiza-
tion — Embedded systems; - Hardware — Hardware
accelerators.

Keywords: FPGA, Graph Processing, Accelerator Genera-
tion, Domain-specific Language, High-level Synthesis

ACM Reference Format:

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei
Zhang, and Cheng Liu. 2025. Graphitron: A Domain Specific Lan-
guage for FPGA-Based Graph Processing Accelerator Generation.
In Proceedings of the 26th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, and Tools for Embedded Systems

https://orcid.org/0000-0002-5178-324X
https://orcid.org/0009-0009-7499-5104
https://orcid.org/0000-0001-8407-2594
https://orcid.org/0000-0003-1951-5015
https://orcid.org/0000-0001-9711-8758
https://orcid.org/0000-0002-5542-7306
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735452.3735533
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3735452.3735533&domain=pdf&date_stamp=2025-06-13

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

(LCTES °25), June 16—17, 2025, Seoul, Republic of Korea. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3735452.3735533

1 Introduction

To meet the growing demand for graph processing services,
such as web page ranking [27], social network analytics [35],
and financial data mining [12], major Internet giants have
invested in developing their own graph processing platforms
for modern data centers. Examples include Amazon’s Nep-
tune [2], Google’s Pregel [24] and Alibaba’s GraphScope [13].
As a result, graph processing has emerged as a core building
block of modern computing platforms.

Despite extensive work exploring graph processing opti-
mizations through software-based techniques [20, 24, 26, 30,
32, 38], general-purpose computing engines suffer from low
energy efficiency due to poor hardware utilization, which
stems from the mismatch between processor architectures
and the irregular characteristics of graph processing. For
example, CPU cores fetch data at the cache-line granular-
ity, but frequent and irregular byte-level accesses in graph
processing significantly degrade cache efficiency [23]. Like-
wise, GPUs organize threads at the warp granularity, which
can lead to severe workload imbalances when processing
graphs with power-law degree distribution, thereby reduc-
ing thread-level parallelism [14]. In contrast, FPGAs with
tailored hardware designs can offer both high performance
and energy efficiency in graph processing [1, 10, 15], making
them a promising infrastructure for modern data centers.
Nevertheless, designing efficient FPGA accelerators for di-
verse graph algorithms remains challenging for high-level
users, particularly those without expertise in FPGAs.

Many prior graph processing frameworks on FPGAs [7,
8,11, 16, 17, 31] have been proposed to lower the program-
ming barrier for high-level users by providing easy-to-use
programming models compatible to software-based ones.
These frameworks typically rely on pre-built accelerator
templates [7, 8, 11, 17, 31] or hardware overlays [16] that
incorporate various hardware optimizations for graph pro-
cessing. However, the tight coupling of the graph process-
ing algorithms, programming models and paradigms, and
accelerator architectures can limit algorithmic flexibility
and lead to suboptimal performance of the generated ac-
celerators. Specifically, only algorithms compatible with the
provided programming models, such as the Gather-Apply-
Scatter (GAS) model, can be applied to the generation frame-
works. The fixed programming model limits the processing
manners and workflows to specific graph processing algo-
rithms and fails to support many practical occasions such
as attributed graph processing. Moreover, the pre-built ac-
celerator template typically adopts a fixed graph processing
paradigm (e.g., edge-centric or vertex-centric) to integrate
specialized hardware optimizations. As a result, these ap-
proaches may perform poorly for some of the algorithms

29

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu

with distinct preferences. For example, an edge-centric par-
adigm is effective for algorithms such as PageRank, where
all vertices stay active over the different iterations. However,
it struggles with BFS, which only activates a subset of ver-
tices, resulting in considerable edge traversal redundancy us-
ing an edge-centric paradigm. These limitations underscore
the need for a more flexible method of generating FPGA-
based graph processing accelerators, which can concurrently
smooth the learning curve, supports diverse graph process-
ing algorithms, and enables multiple processing paradigms.
Although high-level synthesis tools have made hardware
design more accessible, they still demand extensive manual
tuning and require intricate low-level hardware expertise,
making FPGA acceleration difficult for algorithm develop-
ers. Inspired by Graphlt [4, 38], a DSL that decouples graph
algorithms from their optimization strategies for CPUs and
GPUs, we seek to bring this idea to FPGA acceleration, en-
abling flexible algorithm expression while ensuring efficient
hardware generation.

The challenge in designing DSL lies in balancing abstrac-
tion with customization. On the one hand, the DSL should
allow users to describe graph algorithms without dealing
with low-level FPGA optimizations. On the other hand, re-
moving manual tuning requires the compiler to infer and
apply optimizations automatically, which is particularly dif-
ficult given the diverse computation and memory access pat-
terns of graph algorithms. Unlike CPUs and GPUs, where the
hardware behavior is largely uniform, FPGAs require precise
control over execution and data flow, making it challenging
to design a general yet efficient optimization strategy.

To address this, we introduce Graphitron, a domain-
specific language (DSL) for FPGA-based graph processing
accelerators. Graphitron provides a high-level abstraction
by treating vertices and edges as fundamental data types
and allowing users to define various algorithmic operators.
The compiler automatically analyzes algorithmic structures,
maps them to either vertex-centric or edge-centric process-
ing paradigms, and applies a suite of optimizations such
as pipelining, caching, and data shuffling. By eliminating
the need for low-level hardware expertise, Graphitron sig-
nificantly reduces development effort while achieving high
performance across diverse graph workloads. Our evalua-
tion shows that it not only simplifies accelerator generation
but also outperforms existing FPGA-based frameworks in
some representative graph processing algorithms like BFS
and SSSP. Our contributions can be summarized as follows.

e We present Graphitron, a domain-specific language
designed for agile development of FPGA-based graph
processing accelerators. Graphitron defines vertices
and edges as fundamental data types, and allows users
to describe graph algorithms flexibly by customizing

https://doi.org/10.1145/3735452.3735533

Graphitron: A DSL for FPGA-Based Graph Processing Accelerator Generation

operators on the data types and arranging their work-
flow, without exposing them to the complexities of
low-level FPGA designs.

e We develop a compiler that generates efficient, end-to-
end FPGA accelerators from Graphitron specifications.
It automatically maps vertex and edge operators to
vertex-centric or edge-centric processing paradigms,
then infers and integrates a suite of specialized hard-
ware optimizations, including pipelining, caching, and
shuffling, into each processing kernel to produce high-
performance accelerators.

e Graphitron can generate accelerators for a wider range
of graph processing algorithms with less effort than
state-of-the-art FPGA-based graph processing frame-
works. Furthermore, the accelerators produced by
Graphitron achieve performance on par with, and in
some cases exceeding, existing frameworks, thanks to
the performance advantages from both vertex-centric
and edge-centric processing paradigms.

2 Background and Related Work

In this section, we firstly introduce two typical processing
paradigms for graph processing and highlight their distinct
characteristics. We then survey related work, identifying
their limitations in flexibility and performance, and then mo-
tivate a DSL for FPGA-based graph processing accelerators.

2.1 Graph Processing Paradigms

Given a graph G = (V, E), where V is a set of vertices and E
includes all the edges connecting the vertices, a graph pro-
cessing task reveals hidden structures or features of graph
G by running a specific graph processing algorithm. Graph
processing systems are designed to achieve high through-
put for various graph processing algorithms. Two widely
adopted processing paradigms in these systems are vertex-
centric processing (VCP) and edge-centric processing (ECP).
The VCP paradigm operates on vertices, which either push
updates to their neighbors or pull updates from them along
edges. Due to its simplicity in programming and ease of filter-
ing inactive vertices, VCP is commonly employed in graph
processing systems. However, the random adjacency among
vertices in VCP leads to frequent random accesses to vertex
properties, significantly stressing the cache system. To ad-
dress this limitation, the ECP paradigm processes edges in a
streaming manner: it sequentially streams edges to generate
updates, then streams these updates to gather and apply them
to vertices. Thus, ECP effectively reduces random memory
accesses, alleviating cache-system bottlenecks. Nevertheless,
ECP struggles to efficiently skip streaming edges associated
with inactive vertices, resulting in redundant computations
and reduced efficiency, particularly in algorithms where only
part of vertices are active, such as breadth-first search (BFS)
and single-source shortest path (SSSP).

30

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

2.2 Related Work

Graph processing is extensively employed in big data ap-
plications, stimulating advancements in hardware acceler-
ator designs (7, 15, 16, 19, 31, 34, 39]. Among them, FPGA-
based implementations stand out due to their superior perfor-
mance and energy efficiency. Key performance bottlenecks
in graph processing, such as excessive random memory ac-
cesses and low data utilization, have driven extensive opti-
mizations on FPGA-based accelerators. FPGP [9] and Fore-
Graph [10] leveraged graph partitioning and optimized data
placement to enhance the utilization of on-chip BRAMs, sig-
nificantly improving memory access efficiency. Cygraph [3]
introduced a customized CSR format tailored for the BFS algo-
rithm to maximize memory bandwidth utilization on FPGAs.
FPGA-based graph accelerators have also been integrated
into heterogeneous architectures. Zhou et al.[40] utilized a
CPU-FPGA heterogeneous architecture, distributing vertex-
centric and edge-centric tasks strategically between CPUs
and FPGAs to leverage the strengths of both computing en-
gines. GraFBoost[18] and ExtraV [21] embedded FPGA-based
graph processing accelerators within the programmable logic
region of SSDs, significantly reducing data transfer overhead
of disk-based graph processing. Despite these advancements
significantly improving the performance and energy effi-
ciency of FPGA-based graph processing accelerators, devel-
oping specialized accelerators for diverse graph algorithms
on FPGAs remains notably more challenging and less pro-
ductive compared to that on general-purpose computing
engines, such as GPUs or CPUs. This is especially true for
high-level users lacking extensive expertise in FPGA design.

Over the years, design productivity challenges in FPGA
have been addressed by both industry [37] and academia [29,
36]. High-Level Synthesis (HLS)[37] bridges the gap between
high-level programming languages and Hardware Descrip-
tion Languages (HDL) by abstracting hardware complexi-
ties, thereby reducing programming barriers. Despite these
advancements, efficiently implementing algorithms with in-
tensive control logic and irregular memory accesses such as
graph processing remains challenging. To mitigate this com-
plexity, FPGA overlays[29] abstract specific functionalities
of underlying configurable hardware accelerators into inter-
faces accessible from high-level languages, facilitating more
efficient FPGA utilization. These overlays have demonstrated
notable performance in domains such as deep learning and
dataflow graphs. However, their flexibility is limited when
applied to graph processing, primarily due to the diverse
operations and varying computational patterns exhibited by
different graph algorithms.

Graph Processing Frameworks on FPGAs. Several
FPGA-based graph processing frameworks [7, 8, 11, 16, 17,
28,31] have been proposed to provide software-like program-
ming models, enabling users to customize FPGA-based graph
accelerators. As summarized in Table 1, existing frameworks

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

offer user-friendly APIs and leverage predefined accelerator
templates with fixed processing paradigm to generate FPGA-
based accelerators. For example, ThunderGP [8] supports
diverse graph processing algorithms through the Gather-
Apply-Scatter (GAS) programming model, and employs an
HLS-based template with edge-centric paradigm to gener-
ate efficient accelerators. However, reliance on program-
ming models inherently limits the scope of graph processing
algorithms. Moreover, built-in templates typically adopt a
single processing paradigm, restricting their performance
across varying graph workloads. For instance, ECP and VCP
paradigms are respectively suited to BFS iterations with by
more or less active vertices. Additionally, fixed workflow
and processing paradigm in the template constrain the de-
sign space exploration, limiting the performance potential
on FPGA. Therefore, a novel methodology is needed to en-
hance the applicability, flexibility, and efficiency in the agile
development of FPGA-based graph accelerator.

DSLs for Graph Processing. Graphlt [4, 38] is a domain-
specific language (DSL) designed to generate efficient soft-
ware implementations of graph processing algorithms on
CPUs and GPUs. Graphlt provides an algorithm language
and a scheduling language, enabling users to effortlessly
describe graph algorithms and flexibly customize optimiza-
tion strategies. It supports both VCP and ECP paradigms,
allowing flexible orchestration of their workflows. Inspired
by Graphlt, we propose Graphitron, a DSL tailored for FPGA-
based graph processing accelerators. Graphitron adopts pro-
gramming models similar to Graphlt’s algorithm language,
providing users with flexible descriptions of graph process-
ing algorithms. Unlike Graphlt which requires users to ex-
plicitly specify optimizations, Graphitron’s compiler auto-
matically infers a suite of hardware optimizations and in-
tegrates them into HLS-based accelerators. Compared to
existing graph processing frameworks on FPGA, Graphitron
supports both ECP and VCP paradigms, and also flexible
orchestration across different processing kernels.

Table 1. A survey of existing graph processing frameworks
on FPGA and graph processing DSLs.

Framework / DSL H Program. Model Paradigms Output

Graphlily [16] Linear Algebra ECP HLS
ReGraph [7] GAS ECP HLS
ACTS [17] GAS ECP HLS
GraFlex [31] Scatter-Gather ECP HLS
GraphScale [11] Vertex-centric VCP HDL
ThunderGP [8] GAS ECP HLS
Algorithm and C++ (CPU
Graphlt [38] scheduling languages ECP+VCP or GPU)
Graphitron(Ours) Vertex and Edge ECP+VCP HLS
Operators

31

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu

3 Graphitron Overview

@ Graphitron Compiler Outputs Hardware

S Platform

i Lexical | i Semantic ; ! Build Acceleraturé g ;
i &Syntax i Apalysis i Laceel i
! Analysis | | h H v 5
| H | Generate | { pooitoioeeoees =
| Build AST 3 MIR P L EUSE REER v [
i Generate i i E E Generate =ho)§

FIR b Lower MIR : i Host App k...’.*'..LP,
{ Front-end} | Mid-end J i‘ Back-end executable

Host

Figure 1. Overview of Graphitron.

Figure 1 illustrates the development workflow of
Graphitron. From a high-level user’s perspective, Graphitron
is not constrained by rigid programming models typical of
FPGA-based graph processing frameworks. Instead, it intro-
duces a self-developed syntax serving as its programming
model, enabling flexible algorithm descriptions by customiz-
ing vertex and edge operators and orchestrating their work-
flows through Graphitron code. This approach allows users
to focus exclusively on algorithm design without needing
detailed knowledge of FPGA-specific hardware architectures.

During the compilation stage, the Graphitron compiler
accepts Graphitron code and graph data as input, producing
high-performance FPGA accelerators along with the corre-
sponding host program through three standard compilation
phases: front-end, middle-end, and back-end. The front-end
ensures code correctness by performing rigorous grammar
checks, thus resolving ambiguous expression scope issues
commonly encountered in FPGA-based graph processing
frameworks. Subsequently, the middle-end conducts seman-
tic analysis, initially mapping vertex and edge operators into
Vertex-Centric Processing (VCP) and Edge-Centric Process-
ing (ECP) paradigms. Since explicit hardware optimization
directives are not required from algorithm designers, the
compiler automatically extracts semantic information from
operators to infer suitable hardware optimizations, annotat-
ing these optimizations as tags in the intermediate represen-
tation (IR). For example, the compiler implements memory
access optimizations to improve execution efficiency, such
as caching strategies for random vertex access and burst
accesses for sequential edge streaming. Additionally, it ex-
plores loop-level parallelization techniques, including loop
pipelining and unrolling, for further parallelism enhance-
ment. In the back-end stage, the Graphitron compiler inte-
grates these hardware optimizations with graph algorithm
customizations to generate graph-processing accelerators
capable of competitive performance. Rather than directly
producing RTL code, the compiler generates Xilinx OpenCL
code, abstracting away low-level platform-specific details
and simplifying the compilation process. Moreover, the com-
piler generates the host program responsible for workflow
control and FPGA device management. More comprehensive
details about the compiler can be found in Section 4.

Graphitron: A DSL for FPGA-Based Graph Processing Accelerator Generation

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

Table 2. APIs to define operators on vertexset and edgeset in Graphitron.

Vertexset APIs Return Type Description

size() int Returns the size of the vertexset.

init(func vp_func) none Applies vp_func(vertex) to each vertex to initialize vertex-related graph properties.
process(func vp_func) | none Applies vp_func(vertex) to each vertex to process vertex-related graph operations.
Edgeset APIs Return Type Description

size() int Returns the size of the edgeset.

init(func ep_func) none Applies ep_func(edge) to each edge to initialize edge-related graph properties.
process(func ep_func) | none Applies ep_func(edge) to each edge to process edge-related graph properties.

During execution, the host program deploys the accel-
erator bitstream onto the FPGA, loads the specified graph
dataset, and partitions large graph data to ensure each parti-
tion fits into the FPGA’s global memory for preprocessing.
In each processing iteration, the host program transfers nec-
essary data to the FPGA’s global memory and invokes FPGA
computation in a push-button manner accordingly.

3.1 Syntax Definition

Graphitron is an object-oriented programming language de-
signed specifically for graph processing on FPGA. It abstracts
the fundamental graph elements, vertices and edges, as basic
data types used to instantiate graph objects. User-defined
operators for these objects describe the computational steps
involved in graph processing algorithms. This abstraction
enables Graphitron to flexibly support VCP, ECP, and hybrid
graph processing paradigms through user customization.
To illustrate the detailed syntax of Graphitron, we take a
Graphitron code of BFS algorithm implemented in the ECP
paradigm as example, which is shown in Listing 1.

Data Types. The fundamental data types in Graphitron
are Vertex and Edge, representing vertex and edge entities in
the graph, respectively. As shown in Line 1-2 of Listing 1, user
should specify the graph file and construct the vertexsets
and edgesets at the beginning of Graphitron code, which
contains all the vertices and edges of the graph. The data
type of elements in these sets is denoted using "{}". Edges in
the graph can be either weighted or unweighted, as further
specified by " ()". An unweighted edge is represented by a
vertex pair (Vertex, Vertex), while a weighted edge which
includes an additional weight parameter can represented as
(Vertex, Vertex, WeightType). Additionally, users can
define properties of vertices or edges by using "{}" to specify
its owner and " ()" to specify its type as illustrated in Lines
3-5 of Listing 1.

User-defined Operators. Graphitron includes a suite of
APIs to operate on the vertexsets and edgesets as listed in
Table 2. These APIs are derived from computational method-
ologies outlined in [25], including size(), init(func), and
process(func). In this way, users can customize the initial-
ization and processing of graph processing algorithms by

32

defining func function for init(-) and process(-) APIs.
Graphitron’s user-defined functions support fundamental
mathematical operations, including integer and floating-
point computations, as well as common reduction operations
such as sum, min, and max.

We illustrate the usage of Graphitron with an example
of a BFS implementation following the edge-centric pro-
cessing paradigm, shown in Listing 1. The algorithm starts
with an initialization operation invoked via the init()
API (Line 26), which internally calls the reset() function
(Lines 8-10) to set initial values for each vertex’s prop-
erty in the vertexsets vertices. The process() API,
demonstrated in Lines 30-32, accepts user-defined functions
as input to specify the operations executed on vertices
or edges during graph processing. Detailed implementa-
tions of the functions VertexUpdate(), VertexApply(),
and EdgeTraversal() are presented in Lines 11-24. Specif-
ically, EdgeTraversal() iterates over each edge to gen-
erate updates for the target vertices, VertexUpdate() ag-
gregates these updates for the new vertex properties, and
VertexApply () finalizes these updates to the existing vertex
properties. This illustrates the characteristics of the edge-
centric processing paradigm.

Discussion. Graphitron can flexibly support VCP, ECP
and their hybric processing paradigms by customizing tra-
versal functions to edges and vertices, and scheduling their
workflows. For instance, Graphitron code for BFS with hybrid
VCP and ECP paradigm is shown in Listing 2, which imple-
ments seamless transition between two paradigms based on
frontier size (Line 10).

The implementation in Graphitron of graph processing
algorithms which can be expressed by GAS model have
a large fraction of similarities. Specifically, users need to
firstly choose vertex-centric, edge-centric or hybrid process-
ing paradigms to choose a main function template, then
customize the EdgeTraversal and VertexTraversal inter-
faces for graph traversal, VertexUpdate for gathering up-
dates, VertexApply for applying updates to vertex prop-
erties. Therefore, the programming barrier of Graphitron
remains low while improving its flexibility.

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

l‘const edges: edgeset{Edge}(Vertex, Vertex)=load(argv[1]);
2‘const vertices: vertexset{Vertex} = edges.getVertices();
3\01d_1eve1: vector{Vertex}(int); % properties
4‘new_1evel: vector{Vertex}(int);

S‘tuple: vector{Vertex}(int);

6‘frontier_size: int = 1;

7‘leve1: int = 1;

S‘Func reset(v: Vertex)

9\ old_level[v] = new_levell[v] = -1;

10‘end

ll‘Func EdgeTraversal(src: Vertex, dst: Vertex)

12| if (old_level[src] == level)
13‘ tuple[dst] min= level+1;
14‘ end

15\end

16‘func VertexUpdate(v: Vertex)

17‘ if (tuple[v]==(level+1)&&(old_level[v]==-1))
18‘ new_level[v] = tuple[v];

19‘ frontier_size = frontier_size+1;

20‘ end

21| end

Zz‘func VertexApply(v: Vertex)

23‘ old_level[v] = new_level[v];
24| end

25‘func main()

26‘ vertices.init(reset); % Initialization

27| old_level[1] = new_level[1] = 1;

28| while(frontier_size>0)

29‘ frontier_size = 0;

30\ edges.process(EdgeTraversal); % edge traversal
31‘ vertices.process(VertexUpdate);

32‘ vertices.process(VertexApply);

33‘ level += 1;

34‘ end

35‘end

Listing 1. Graphitron code for BFS of edge-centric
processing paradigm.

I‘Func VertexTraversal(v: Vertex)

2| if (old_levellv] == level)

3\ for ngh in v.getNeighbors()

4‘ tuple[ngh] min= level + 1;

5‘ end

6\ end

7‘end

S‘func main()

9| ..

10| if (frontier_size<@.05*vertices.size())
11‘ vertices.process(VertexTraversal); % VCP
12\ else

13| edges.process(EdgeTraversal); % ECP
14‘ end

15| ...

16‘end

Listing 2. Graphitron code for BFS of hybrid vertex-centric
and edge-centric paradigms.

33

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu

4 Graphitron Compiler

The Graphitron compiler accepts Graphitron code and graph
data as input and generates FPGA accelerators through the
front-end, middle-end, and back-end stages.

4.1 Front-end

The front-end of the Graphitron compiler performs lexical
analysis and syntax parsing on the Graphitron code, con-
structs an Abstract Syntax Tree (AST), and generates the
Front-end Intermediate Representation (FIR). Our front-end
implementation involves a self-developed Lexer and Parser
tailored specifically for handling graph-centric abstractions
(vertex, edge, property), thus directly mapping these con-
cepts to FPGA hardware optimization tags without excessive
pragmas or hints. Although currently independent from com-
piler frameworks like LLVM or MLIR, Graphitron’s semantic
abstractions are designed with portability, making it feasible
to compile into an MLIR in the future. This integration poten-
tial highlights Graphitron’s capability to connect seamlessly
with broader compiler ecosystems.

4.2 Middle-end

The middle-end of the compiler performs semantic analysis
based on FIR to create Middle-end Intermediate Representation
(MIR), and then refines MIR to map the structure of target
FPGA and adds hardware optimizations as tags into MIR.

Firstly, the AST generated by the front-end has inherent
limitations, as each node can access information only from
its immediate children. To address this, the compiler globally
traverses the FIR nodes within the AST, performing semantic
analysis and establishing enriched MIR contexts. This ap-
proach allows the Graphitron compiler to comprehensively
interpret the programmer’s intent. For instance, given the
statement edges. process(EdgeTraversal), FIR can only
recognize a reference to the EdgeTraversal function via
the process API call. In contrast, MIR supplies additional se-
mantic details about the function, including parameter types,
function bodies, and return types.

Furthermore, the compiler identifies objects within
Graphitron code and allocates appropriate memory space on
the target hardware for these objects and their associated
properties. Specifically, it determines the data types and sizes
of graph properties used within the graph-processing algo-
rithms to estimate the required memory resources accurately.
The compiler then automatically assigns memory units and
channel IDs to these graph properties, enabling the FPGA to
efficiently allocate memory and manage pointers for transfer-
ring graph data to hardware kernels. For large graphs whose
sizes exceed the available FPGA memory capacity, the com-
piler first devises a memory allocation strategy for graph
properties to maximize FPGA memory utilization. Subse-
quently, it formulates a graph-partitioning scheme to ensure
each partition fits within the allocated FPGA memory space.

Graphitron: A DSL for FPGA-Based Graph Processing Accelerator Generation

Graphitron supports both edge-centric and vertex-centric
processing paradigms. Therefore, for graph preprocessing,
the compiler generates two distinct graph data formats in
the host program: it either vertically partitions the graph
and stores it in standard coordinate format (COO) for edge-
centric processing (ECP), or horizontally partitions the graph
and stores it in compressed sparse row format (CSR) for
vertex-centric processing (VCP). The compiler analyzes the
equal vertex size of each partition based on FPGA memory
capacity and determines the appropriate data format accord-
ing to operators used in the algorithm. For example, when
the compiler detects that the func argument in edge operator
API process(-) accesses vertex data, it classifies the func-
tion as edge-centric processing and accordingly generates
preprocessing code for COO format in the host program.

Finally, the compiler infers a suite of hardware opti-
mizations, and adds tags to MIRs related to the acceler-
ator kernel, which are collected by traversing the chil-
dren of process(-). These hardware optimizations include
memory optimizations for graph properties, and parallel
and pipelining optimization for function kernels. We take
edges.process(EdgeTraversal) in Listing 1 as an exam-
ple, and the identified MIRs are shown in Table 3. The
compiler automatically unrolls loops of func to maximize
data parallelism, and pipelines instructions to explore the
instruction-level parallelism. Since the func frequently ac-
cesses data from off-chip memory, memory bandwidth be-
comes the throughput bottleneck. The unroll pragma can
mitigate this issue by unfolding loops into multiple parallel
logic paths, enabling simultaneous processing of multiple
data streams and thus improving overall throughput. To
determine the optimal unroll factor, the compiler sets the
corresponding parameters as the number of memory chan-
nels where the primary data structure of the process API
(e.g. edges) is allocated. For pipeline optimization, we rely
on the HLS tool to automatically determine the minimal fea-
sible initiation interval, rather than manually specifying it
by the compiler.

Different graph properties exhibit distinct memory ac-
cess patterns. Properties associated with edges are typically
accessed sequentially, whereas vertex-related properties pre-
dominantly involve random access patterns. Consequently,
we adopt tailored memory access optimizations based on
these differences. To maximize bandwidth utilization, we
apply burst read and write operations (BR or BW) for graph
properties stored in FPGA memory. For vertex-related prop-
erties characterized by frequent random accesses, such as
old_level and tuple, we allocate a dedicated caching mod-
ule using FPGA’s UltraRAM to enhance throughput of ran-
dom accesses. Additionally, for vertex properties holding
random writes, such as tuple, we implement a shuffling
module before burst writing to further improve throughput.

34

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

Table 3. An example of hardware optimization tags for MIRs
in edges.process(EdgeTraversal). BR and BW indicate
burst read and write, respectively.

MIRs ‘ Memory Tags Parallel Tags Pipeline Tags
func EdgeTraversal() <l,1,1> <Unroll=#Channel> <yes>
edgeset edges <BR,1,1> <1l> <l>
vector{Vertex} old_level <BR, cache, 1> <l> <l>
vector{Vertex} tuple <BW,cache,shuffle> <l> <l>

4.3 Back-end

The back-end primarily generates hardware accelerators to
the target FPGA platforms, and generates corresponding
host program for data movement and device management.
Figure 2 illustrates the overall framework of the generated
accelerator by Graphitron compiler’s back-end. Instead of re-
lying on a built-in accelerator template, it employs a generic
architecture comprising various basic graph-processing op-
erators designed to accommodate a broad spectrum of graph-
processing algorithms. These operators are subsequently
translated into hardware components implemented using
Xilinx OpenCL. The workflow is detailed as follows: @ Graph
properties are first streamed from FPGA memory (HBM in
this example) via the Burst Read module, and then directed
into the cache module for vertex or edge processing. Note
that the cache module may be omitted in the case of edge
operators. @ Within the Edge Process module, edges are read
in COO format, with edge weights selectively loaded de-
pending on whether edge weights are required. The Edge
Operation module then produces an update stream compris-
ing destination vertex indices and corresponding update
values. Similarly, in the Vertex Process module, vertex proper-
ties are cached, and active vertices (frontiers) are identified
through the Frontier Check module. Neighboring edges of
these frontiers in CSR format are burst-read from FPGA
memory. Subsequently, the Vertex Operation module out-
puts an update stream containing destination vertex indices
and their associated update values according to user-defined
computing logic. ® If the output property is not marked as
shuffle, the update stream is directly written back to FPGA
memory using the Burst Write module, as exemplified by the
old_level property in the VertexApply function, and this
computing kernel finished its computation. @ Conversely,
if the output property is designated as shuffle, indicating
that the stream involves random writes, the stream is fur-
ther routed to the Stream Duplicate module, such as tuple
property in the EdgeTraversal function, and this comput-
ing kernel goes to step . ® The update stream is duplicated,
sliced and distributed across multiple Processing Element
(PE) units. ® Within each PE unit, the Shuffle module reor-
ganizes the update stream and filters out unnecessary data.
Subsequently, conflicts in updates are resolved by the RAW
module, and redundant updates are aggregated by the Re-
duce module. The resulting updates are then stored into the
destination graph properties cached in the on-chip URAM.

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

@ Finally, the updated graph properties stored sequentially
in the URAM cache are written back to HBM via the Burst
Write module.

Burst Read I Burst Write |

27

| Middle-end |
: updates|streams !
X Edge Process @ (5) o :
v
: ., '::% EdgeProp Read ©» T :
3 g PE 4y Y
: Edge Operation g Shuffle i | ! :
1E LA RAW |HIPE! = iPE[|
e Vertex Process @ = 5 b
s & : ° R L
s S Frontier Check = e :
e S 2 URAM l
11 Vertex Operation o) 1
1 I3) prop stream 1
: (1] updates stream :
: - Burst Write 1
1
! 1
! 1

FPGA
User-defined]V:)en:l:z 1:::::5 On-chip FPGA Static Hardware
Hardware Modules pM P Z, Resources Modules
Y.
OpenCL Library
clCreateKernel | I clSetKernelArg I | clEnquenueTask
Host

Figure 2. Back-end Framework of Graphitron compiler

Since algorithm-specific optimizations would limit
Graphitron’s flexibility, we focus on generic hardware op-
timizations, such as pipelining, unrolling, and memory
optimizations in the compiler back-end to enhance the
performance of generated accelerator while maintaining
Graphitron’s flexibility.

Pipelining and Loop Unrolling. Pipelining and loop un-
rolling are common hardware optimization techniques that
achieve instruction-level parallelism and enhance spatial par-
allelism, respectively. However, high-level code often con-
tains data conflicts that impede effective pipelining or loop
unrolling. For example, Listing 3 demonstrates a typical read-
write conflict involving the variable SP in the single-source
shortest path algorithm. To resolve such conflicts, the com-
piler’s middle-end automatically eliminates data conflicts by
introducing temporary variables and auxiliary functions to
handle intermediate computations. Listing 4 illustrates the
modified code, where the conflict is resolved by introducing
a temporary variable tmp and a separate function sssp@()
dedicated to assigning tmp.

Memory Access Optimizations. Graphitron incorpo-
rates several optimizations aimed at improving memory

35

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu

1‘ func sssp(src:Vertex,dst:Vertex,weight:int)
2‘ SP[dst] min= (SP[srcl+weight);
3\ end

Listing 3. The original function of SSSP algorithm.

1‘ func sssp@(v:Vertex)

2‘ tmp[v] = SP[v];

3\ end

4‘ func ssspl(src:Vertex,dst:Vertex,weight:int)
5‘ SP[dst] min= (tmp[src]+weight);

6\ end

Listing 4. The decoupled function of SSSP algorithm.

access efficiency, which is crucial for enhancing the per-
formance of graph-processing accelerators. The Burst Read-
/Write module optimizes memory bandwidth utilization of se-
quential access to FPGA memory. To accelerate random mem-
ory accesses, we implemented a dedicated on-chip caching
module, significantly improving data reuse efficiency. Ad-
ditionally, we employ a data shuffling module [6] to con-
vert random data writes into sequential writes, facilitating
conflict-free operations and efficiently distributing sequen-
tial writes across multiple PEs targeting different memory
banks for higher bandwidth. In this way, we improve the
bandwidth of random memory accesses to FPGA memory.

4.4 Host Program and System Integration

Graphitron provides an end-to-end framework for graph
processing on a hybrid CPU-FPGA architecture. It achieves
this by automatically generating a host program responsible
for graph preprocessing, accelerator management, and co-
ordinating data transfers between the CPU and FPGA. The
system integration is facilitated by leveraging the OpenCL
framework, specifically utilizing Xilinx Runtime (XRT) APIs,
such as clEnqueueMigrateMemObjects, clSetKernelArg, and
clEnqueueTask, to efficiently manage data transfers and accel-
erator execution from the CPU side. Additionally, Graphitron
introduces implicit programming interfaces for tasks such
as graph loading, partitioning, and data migration between
CPU and FPGA. These interfaces, while essential for seamless
system integration, remain transparent to the developers. In
summary, these supporting interfaces enable straightforward
deployment of diverse hardware accelerators, significantly
enhancing Graphitron’s adaptability and flexibility.

5 Evaluation

We evaluate Graphitron from three perspectives: (1) Per-
formance: We compare Graphitron’s performance against
ThunderGP, a state-of-the-art graph processing framework
on FPGA. (2) Flexibility: We demonstrate Graphitron’s

Graphitron: A DSL for FPGA-Based Graph Processing Accelerator Generation

Naive HLS Impl.
150 125
x 100
= 100
5- 75
g 50 50
a, 25
w
0 T T T T T T T 1 0 T

ThunderGP

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

[0 Graphitron

[d

N
[7 T

AM RI19 TC LJ U23 R23 AVG
(a) BFS

AM R19 TC LJ U223 R23 AVG
(b) SSSP

75
H 5
T 1 0 T

AM R19 TC LJ U23 R23 AVG
(c) PageRank

Figure 3. Speedups to naive HLS implementation of ThunderGP and Graphitron when running BFS, SSSP and PageRank.

capability to implement efficient accelerators for graph-
processing algorithms that cannot be expressed using ex-
isting graph processing frameworks on FPGA. (3) Produc-
tivity: We assess Graphitron’s programming complexity
compared to ThunderGP to highlight productivity benefits.

5.1 Experiment Setup

Testbed. We implement the graph processing accelerators
on an AMD Xilinx Alveo U280 FPGA board, which features 8
GB of HBM2 memory capable of accessing 32 HBM pseudo-
channels through AXI3 interfaces. The synthesis, placement,
routing, and simulation of the graph processing accelerators
are conducted using the AMD Xilinx Vitis 2019.2 suite on
a CentOS Linux 7 system. The host server is powered by
an Intel Xeon E5-2680 V2 CPU and equipped with 128 GB
of DDR3 DRAM as main memory. The frequency of all the
implementations is set to 200MHz for comparison.

Graph Datasets. We list all the tested datasets in Table
4, including social networks, web link and synthetic graphs.
Among them, U23 is characterized by a uniform degree dis-
tribution.

Table 4. Graph datasets.

attention neural network [33]. To ensure clarity, the pseudo
codes of PPR and GATN are detailed in Algorithm 1 and
Algorithm 4.

Algorithm 1: Personalized PageRank(PPR).
1 PRyig < {0, scoreinit,0,...,0};

2 map « {0,1,0,...,0}, m « 0.85, € « 0.001;
3 while not all v have Converged do

4 fore=(s,d) € Edo

5 L contrib[d] < contrib[d] + ngg"fs[]s];

6 forov € Vdo

; PRuew|v] « (1-m)xmap[v] +mXxcontrib[v];
o || i sl PRl en

9 L Converge(v);

10 | SWap(PRnewa PRold);

Algorithm 2: Graph Attention(GATN).

Graph Dataset Abbr. | |V| |E| Type
AMAZON0601 [22] AM | 403K | 3.4M | Social Network
RMAT-19-32 [5] R19 | 524K | 16.8M | Synthetic Graph
WIKI-TOPCATS [22] TC | 1.8M | 28.5M Web Link
SOC-LIVEJOURNAL [22] LY 4.8M | 69.0M | Social Network
UNIFORM-23-16 [5] U23 | 84M | 134.2M | Synthetic Graph
RMAT-23-16 [5] R23 | 8.4M | 134.2M | Synthetic Graph

Graph Processing Algorithms. We implement a diverse
set of graph processing algorithms for evaluation, including
three classical algorithms: PageRank, Breadth-First Search
(BFS), and Single-Source Shortest Path (SSSP). For BFS and
SSSP, Graphitron implements a hybrid vertex-centric and
edge-centric processing paradigms, whereas it uses an edge-
centric processing paradigm for PageRank. Besides, we in-
clude two emerging graph processing algorithms, including
Personalized PageRank (PPR) for recommendation system
and Graph Attention (GATN), a key component of graph

36

1 fore=(s,d) € Edo
2 L accum|s] « accum|[s] + we;
3 fore = (s,d) € Edo

. We .
4 L attention, < Zccum[s]’

Baselines. We provide two baselines to evaluate
Graphitron. To benchmark the performance, we imple-
ment ThunderGP [8], a state-of-the-art FPGA-based graph
processing framework optimized for efficient memory
access at both on-chip and off-chip levels. Additionally,
to measure flexibility, we introduce a naive HLS-based
FPGA graph accelerator, developed directly using HLS code
to describe graph processing algorithms with some basic
HLS-specific optimizations for loops, including pipelining
and loop unrolling.

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

5.2 Performance Evaluation

As illustrated in Figure 3, both Graphitron and ThunderGP
significantly outperform the naive HLS implementation
when executing classical graph processing algorithms, pri-
marily due to their extensive integrated memory access op-
timizations. Furthermore, Graphitron consistently achieves
better performance than ThunderGP across all datasets for
BFS and SSSP, yielding average speedups of 1.48x and 1.21X,
respectively. The primary reason for these improvements is
that Graphitron enables users to implement accelerators with
hybrid processing kernels of both VCP and ECP paradigms.
Moreover, Graphitron can dynamically transition between
these paradigms based on the number of frontiers during
the runtime, whereas ThunderGP supports only the edge-
centric paradigm. When the number of frontiers is low,
Graphitron’s vertex-centric kernel effectively reduces re-
dundant workloads, resulting in higher overall throughput.
However, Graphitron’s performance in PageRank is slightly
(4.2%) lower compared to ThunderGP. This minor perfor-
mance gap arises because ThunderGP, due to its fixed inter-
faces, only supports returning the cumulative sum of differ-
ences between the old and new PageRank values. In contrast,
Graphitron provides developers the flexibility to individu-
ally record these differences as a separate vertex property.
Although this enhances programmability and flexibility, it
introduces additional vertex property accesses, resulting in
a modest performance overhead.

The most significant performance improvements in
Graphitron compared to naive HLS implementation stem
from memory access optimizations. We designate Graphitron
variants that individually integrate burst access, shuffling,
or caching optimizations as +BurstAccess, +Shuffle, and
+Cache, respectively. Figure 4 illustrates the speedups ob-
tained by these variants over the naive HLS implementation
when executing BFS. The results indicate that variants of
Graphitron, which incorporate only a single memory access
optimization, yield limited performance gains. This limita-
tion occurs because graph processing workloads involve
diverse memory access patterns. Therefore, optimizing only
one pattern leaves others as performance bottlenecks. By
integrating all three memory access optimizations simulta-
neously, Graphitron can effectively mitigate inefficiencies
across multiple dimensions, resulting in substantial perfor-
mance improvement.

5.3 Flexibility Evaluation

Due to reliance on a fixed GAS programming interface, Thun-
derGP cannot support algorithms such as PPR and GATN.
Specifically, ThunderGP is incapable of defining a variable
number of graph properties, such as the mapping arrays
for vertices required by PPR, making it unsuitable for imple-
menting the PPR algorithm. Additionally, ThunderGP cannot
handle writes to edge properties, such as attentions in GATN,

37

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu

+BurstAccess [+Shuffle [+Cache [Graphitron
100
X
5
< 10
0
0
="
2
1+
AM R19 TC LJ U23 R23 AVG

Figure 4. Speedups to naive HLS implementation with differ-
ent memory access optimizations when running BFS. (Y-axis
is logarithmic.)

thereby precluding its support for GATN. In contrast, both
the naive HLS implementation and Graphitron can effort-
lessly generate FPGA-based accelerators for these algorithms.
As detailed in Table 5, Graphitron achieves average speedups
of 71.6X and 243.5X over the naive HLS implementations
for PPR and GATN, respectively, demonstrating its strong
performance combined with high flexibility.

Table 5. Speedups of Graphitron to naive HLS implementa-
tion on PPR and GATN.

Algorithm | AM R19 TC Ly Uz23 R23 Avg.
PPR 86.1X 68.1x 851X 56.7X 664X 67.4X | 71.6X
GATN 220.0X 100.5x 129.8x 202.7Xx 427.1x 379.0X | 243.5X

Graphitron provides greater flexibility in algorithm de-
sign compared to ThunderGP, as summarized in Table 6.
Specifically, Graphitron supports VCP, ECP, and hybrid com-
binations of these paradigms, whereas ThunderGP exclu-
sively supports ECP, requiring traversing all edges in each
iteration. This limitation results in wasted bandwidth and
computation, particularly for algorithms with fewer frontiers.
Furthermore, ThunderGP treats edge weights as constants,
preventing dynamic modification by the accelerators. In con-
trast, Graphitron enables developers to dynamically update
edge weights efficiently by the accelerator, which is cru-
cial for GNN-related algorithms. Additionally, conventional
frameworks impose strict constraints on the number and
type of hardware kernels and graph properties. Graphitron,
however, allows developers to flexibly define hardware ker-
nels and graph properties, bounded only by the resource
constraints of the FPGA, significantly enhancing the design
flexibility of accelerator development.

5.4 Design Productivity Evaluation

As shown in Table 6, whereas ThunderGP demands modifi-
cations across at least five different files, Graphitron enables
developers to implement a complete graph algorithm in a
single file with fewer than 100 lines of code. Furthermore,
encapsulating algorithms within ThunderGP’s GAS model
necessitates an in-depth understanding of graph algorithms,
whereas defining operations using ECP or VCP in Graphitron

Graphitron: A DSL for FPGA-Based Graph Processing Accelerator Generation

is more intuitive. Additionally, ThunderGP’s configuration
files often require extensive FPGA-specific expertise for accu-
rate implementation, and introducing new hardware kernels
involves substantial manual debugging effort, adding consid-
erable complexity. Graphitron empowers even inexperienced
users to efficiently define graph algorithms using a concise,
high-level language, significantly lowering the barrier to
accelerator design. The compilation time of Graphitron is
5.9% longer than that of ThunderGP. This modest overhead
arises from the compiler’s capability to accommodate flexi-
ble developer-defined hardware descriptions. For instance,
introducing vertex kernel introduces pointers and access
operations to the generated hardware modules, slightly in-
creasing design complexity and consequently resulting in
additional synthesis overhead.

Table 6. Design productivity and flexibility comparison.

Systems ‘ ‘ ThunderGP ‘ Graphitron
. Code Length modify to > 5 files | ~100 lines in one file
Programming Programming Edge/Vertex-centric
Complexity Interface Only GAS Model Operations
FPGA Understanding Proficient Inexperienced
VCP X 4
ECP v v
Programming | Hybrid(VCP+ECP) X v
Flexibility Weight Modification X v
Variable kernels X v
Variable properties X v
Compilation Overhead H 4h55min ‘ 5h12min

6 Conclusion

In this work, we presented Graphitron, a DSL for agile de-
velopment of graph accelerators on FPGAs. Graphitron ab-
stracts away low-level hardware complexities to the users,
and defines vertices and edges as primitive data types to
supports both edge and vertex operations for convenient
algorithm description. The back-end of Graphitron com-
piler incorporates hardware optimizations like pipelining,
caching, burst accessing, and shuffling to automatically gen-
erate high-performance graph accelerators. Experiments on
various graph processing algorithms show that Graphitron-
generated accelerators deliver comparable performance with
state-of-the-art graph processing framework on FPGA, while
offering superior design productivity and flexibility.

Acknowledgments

This work is in part supported by the Strategic Priority Re-
search Program of the Chinese Academy of Sciences, un-
der Grant No. XDB0660000, XDB0660100, XDB0660102, and
XDB0660103, and the National Key Research and Develop-
ment Program of China, under Grant No.2022YFB4500405.

References

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. 2015. A scalable processing-in-memory accelerator for

38

[2

—

E

—

[4

[l

5

—

(6

—

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

parallel graph processing. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture. 105-117.
Amazon. Accessed Feb. 25, 2024. Amazon Neptune.
amazon.com/cn/neptune.

Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and
Joseph Zambreno. 2014. Cygraph: A reconfigurable architecture for
parallel breadth-first search. In 2014 IEEE International Parallel & Dis-
tributed Processing Symposium Workshops. IEEE, 228-235.

Ajay Brahmakshatriya, Emily Furst, Victor A Ying, Claire Hsu, Chang-
wan Hong, Max Ruttenberg, Yunming Zhang, Dai Cheol Jung, Dustin
Richmond, Michael B Taylor, et al. 2021. Taming the zoo: The unified
graphit compiler framework for novel architectures. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 429-442.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.
R-MAT: A recursive model for graph mining. In Proceedings of the 2004
SIAM International Conference on Data Mining. SIAM, 442-446.
Xinyu Chen, Ronak Bajaj, Yao Chen, Jiong He, Bingsheng He, Weng-Fai
Wong, and Deming Chen. 2019. On-the-fly parallel data shuffling for
graph processing on OpenCL-based FPGAs. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL). IEEE,
67-73.

Xinyu Chen, Yao Chen, Feng Cheng, Hongshi Tan, Bingsheng He, and
Weng-Fai Wong. 2022. ReGraph: Scaling graph processing on HBM-
enabled FPGAs with heterogeneous pipelines. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1342-
1358.

Xinyu Chen, Feng Cheng, Hongshi Tan, Yao Chen, Bingsheng He,
Weng-Fai Wong, and Deming Chen. 2022. ThunderGP: resource-
efficient graph processing framework on FPGAs with hls. ACM Trans-
actions on Reconfigurable Technology and Systems 15, 4 (2022), 1-31.
Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. FPGP:
Graph processing framework on FPGA a case study of breadth-first
search. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 105-110.

Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and
Huazhong Yang. 2017. ForeGraph: Exploring large-scale graph process-
ing on multi-FPGA architecture. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 217-226.
Jonas Dann, Daniel Ritter, and Holger Froning. 2024. GraphScale:
Scalable processing on FPGAs for HBM and large graphs. ACM Trans-
actions on Reconfigurable Technology and Systems 17, 2 (2024), 1-23.
Marcos Lopez De Prado. 2018. Advances in financial machine learning.
John Wiley & Sons.

Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping
Qian, Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope: a
unified engine for big graph processing. Proceedings of the VLDB
Endowment 14, 12 (2021), 2879-2892.

Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen,
Xiao-Fei Liao, and Hai Jin. 2019. A survey on graph processing accel-
erators: Challenges and opportunities. Journal of Computer Science
and Technology 34 (2019), 339-371.

Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and
Margaret Martonosi. 2016. Graphicionado: A high-performance and
energy-efficient accelerator for graph analytics. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1-13.

Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily:
Accelerating graph linear algebra on HBM-equipped FPGAs. In 2021
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD). IEEE, 1-9.

Wole Jaiyeoba, Nima Elyasi, Changho Choi, and Kevin Skadron. 2023.
Acts: a near-memory FPGA graph processing framework. In Proceed-
ings of the 2023 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. 79-89.

https://aws.

https://aws.amazon.com/cn/neptune
https://aws.amazon.com/cn/neptune

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

—

[t

—

—

[l

—

—

= =

—

[18] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. 2018.

GraFBoost: Using accelerated flash storage for external graph analytics.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 411-424.

Nachiket Kapre. 2015. Custom FPGA-based soft-processors for sparse
graph acceleration. In 2015 IEEE 26th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE,
9-16.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012.
{GraphChi}:{Large-Scale} Graph Computation on Just a {PC}.
In 10th USENIX symposium on operating systems design and
implementation (OSDI 12). 31-46.

Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H Peter Hofstee, Gi-
Joon Nam, Mark R Nutter, and Damir Jamsek. 2017. Extrav: boosting
graph processing near storage with a coherent accelerator. Proceedings
of the VLDB Endowment 10, 12 (2017), 1706-1717.

Jure Leskovec and Andrej Krevl. Accessed Feb. 25, 2024. SNAP Datasets:
Stanford Large Network Dataset Collection. http://snap.stanford.edu/
data.

Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry. 2007. Challenges in parallel graph processing. Parallel
Processing Letters 17, 01 (2007), 5-20.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a
system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. 135-
146.

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking
like a vertex: a survey of vertex-centric frameworks for large-scale
distributed graph processing. ACM Computing Surveys (CSUR) 48, 2
(2015), 1-39.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A light-
weight infrastructure for graph analytics. In Proceedings of the twenty-
fourth ACM symposium on operating systems principles. 456-471.
Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, et al.
1999. The pagerank citation ranking: Bringing order to the web. (1999).
Amin Sahebi, Marco Barbone, Marco Procaccini, Wayne Luk, Georgi
Gaydadjiev, and Roberto Giorgi. 2023. Distributed large-scale graph
processing on FPGAs. Journal of big Data 10, 1 (2023), 95.

Runbin Shi, Yuhao Ding, Xuechao Wei, He Li, Hang Liu, Hayden K-
H So, and Caiwen Ding. 2020. FTDL: a tailored FPGA-overlay for
deep learning with high scalability. In 2020 57th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1-6.

Xinmiao Zhang, Zheng Feng, Shengwen Liang, Xinyu Chen, Lei Zhang, and Cheng Liu

[30] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph pro-

cessing framework for shared memory. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming.
135-146.

Chunyou Su, Linfeng Du, Tingyuan Liang, Zhe Lin, Maolin Wang,
Sharad Sinha, and Wei Zhang. 2024. GraFlex: Flexible Graph Processing
on FPGAs through Customized Scalable Interconnection Network. In
Proceedings of the 2024 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. 143-153.

Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali
Patwary, Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar
Das, and Pradeep Dubey. 2015. Graphmat: High performance graph
analytics made productive. arXiv preprint arXiv:1503.07241 (2015).
Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention net-
works. arXiv preprint arXiv:1710.10903 (2017).

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. 2016. Gunrock: A high-performance graph
processing library on the GPU. In Proceedings of the 21st ACM SIGPLAN

symposium on principles and practice of parallel programming. 1-12.
Stanley Wasserman and Katherine Faust. 1994. Social network analysis:

Methods and applications. (1994).

Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang,
Han Hu, Yun Liang, and Jason Cong. 2017. Automated systolic array
architecture synthesis for high throughput CNN inference on FPGAs.
In Proceedings of the 54th Annual Design Automation Conference 2017.
1-6.

Xilinx Inc. Accessed Feb. 25, 2024. Xilinx High-Level Synthe-
sis (HLS). https://www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman Amarasinghe. 2018. Graphit: A high-

performance graph dsl. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1-30.

Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman,
and Qing Wu. 2019. Hitgraph: High-throughput graph processing
framework on fpga. IEEE Transactions on Parallel and Distributed
Systems 30, 10 (2019), 2249-2264.

Shijie Zhou and Viktor K Prasanna. 2017. Accelerating graph analytics
on CPU-FPGA heterogeneous platform. In 2017 29th International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, 137-144.

Received 2025-03-21; accepted 2025-04-21

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Graph Processing Paradigms
	2.2 Related Work

	3 Graphitron Overview
	3.1 Syntax Definition

	4 Graphitron Compiler
	4.1 Front-end
	4.2 Middle-end
	4.3 Back-end
	4.4 Host Program and System Integration

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Evaluation
	5.3 Flexibility Evaluation
	5.4 Design Productivity Evaluation

	6 Conclusion
	Acknowledgments
	References

