
Gui CY, Zheng L, He BS et al. A survey on graph processing accelerators: Challenges and opportunities. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 34(2): 339–371 Mar. 2019. DOI 10.1007/s11390-019-1914-z

A Survey on Graph Processing Accelerators: Challenges and

Opportunities

Chuang-Yi Gui1,2,3, Student Member, CCF, Long Zheng1,2,3,∗, Member, CCF, ACM, IEEE
Bingsheng He4, Senior Member, IEEE, Member, ACM, Cheng Liu4,5, Xin-Yu Chen4

Xiao-Fei Liao1,2,3, Senior Member, CCF, Member, IEEE, and Hai Jin1,2,3, Fellow, CCF, IEEE, Member, ACM

1National Engineering Research Center for Big Data Technology and System, School of Computer Science and

Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2Services Computing Technology and System Laboratory, School of Computer Science and Technology

Huazhong University of Science and Technology, Wuhan 430074, China

3Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science

and Technology, Wuhan 430074, China

4School of Computing, National University of Singapore, Singapore 117418, Singapore

5Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

E-mail: {chygui, longzh}@hust.edu.cn; hebs@comp.nus.edu.sg; liucheng@ict.ac.cn; xinyuc@comp.nus.edu.sg
E-mail: {xfliao, hjin}@hust.edu.cn

Received July 16, 2018; revised February 2, 2019.

Abstract Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g.,

data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving

the performance and/or energy efficiency on traditional architectures, dedicated hardware solutions, also referred to as graph

processing accelerators, are essential and emerging to provide the benefits significantly beyond what those pure software

solutions can offer. In this paper, we conduct a systematical survey regarding the design and implementation of graph

processing accelerators. Specifically, we review the relevant techniques in three core components toward a graph processing

accelerator: preprocessing, parallel graph computation, and runtime scheduling. We also examine the benchmarks and

results in existing studies for evaluating a graph processing accelerator. Interestingly, we find that there is not an absolute

winner for all three aspects in graph acceleration due to the diverse characteristics of graph processing and the complexity of

hardware configurations. We finally present and discuss several challenges in details, and further explore the opportunities

for the future research.

Keywords graph processing accelerator, domain-specific architecture, performance, energy efficiency

1 Introduction

For a wide variety of applications, e.g., date sci-

ence, machine learning, social networks, roadmap and

genomics, the graph is expressive to represent the inhe-

rent relationships between different entities. Therefore,

graph processing has become a hot topic for solving

many real-world problems in both academia and in-

dustry. With the growing development of Internet of

Things and cloud computing, the size and the comple-

xity of graphs are still expanding. This poses great

challenges for modern graph processing eco-systems in

both performance and energy efficiency.

There are a large number of studies that attempt to

use software solutions to improve the performance and

energy efficiency of graph processing. From distributed

computing environment[1,2], to single high-end server[3],

to the commodity personal computer[4,5], these sys-

Survey

Special Section of NSFC Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao 2014–2017

This work is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003502,
and the National Natural Science Foundation of China under Grant Nos. 61825202, 61832006, 61628204 and 61702201.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

340 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

tems basically make tremendous efforts on software op-

timizations for programmability, high performance and

scalability under traditional architectures. In an effort

to accelerate graph workloads, multi-core CPUs and

GPUs have been recently adopted to expose a high

degree of parallelism for high performance graph ite-

ration, e.g., Medusa[6], Cusha[7], GunRock[8], Frog[9],

MapGraph[10], and Enterprise[11].

Despite a large number of software solutions, the

potentials of graph processing on performance and en-

ergy efficiency are still bounded to current hardware

architectures. Real-world graphs often follow a power-

law distribution in the sense that most of vertices are

associated with a few edges, leading to the fact that pro-

hibitive memory access overhead and low efficiency have

occurred on general-purpose processors[12−15]. The ir-

regularity in graph processing inherently falls short in

exploiting memory- and instruction-level parallelism on

traditional processors. It is also observed in the previ-

ous studies that a wealth of memory bandwidth is ac-

tually under-utilized for graph processing on existing

commodity multi-core architectures[15−18].

Though GPUs have demonstrated compelling per-

formance on graph processing[6−8,19], they still suffer

from key issues in terms of control and memory diver-

gence, load imbalance and superfluous global memory

accesses. More important is that CPUs and GPUs are

known for relatively high energy consumption. With

the end of Moore’s law, using pure software solutions on

traditional architectures is often extremely difficult to

fill the significant gap between the general-purpose ar-

chitectures and the graph-specific computation for seek-

ing the top performance of graph processing.

For graph processing, architectural innovation is im-

perative. Hennessy and Patterson identified the im-

portance, trend and opportunities of Domain-Specific

Architecture (DSA) in their recent technical report[20].

It is pointed out that open sourced architectural

implementations 1○ are the key for the innovations

on hardware design[21]. The agile chip develop-

ment can also shorten the development cycle for DSA

prototypes[22]. These guidelines provide one of most

effective means for driving the rapid development of

graph processing specific accelerators. At this point,

hardware platform templates, e.g., Field Programmable

Gate Array (FPGA) and Application-Specific Inte-

grated Circuit (AISC), are in line with the demand of

the times. A large number of industries have already

deployed their services on these beneficial hardware

platforms for top performance and energy efficiency.

For instance, FPGAs have been used in Microsoft data-

center for energy efficiency improvement[23].

Specifically in terms of graph processing, it has been

also witnessed that a large number of relevant stu-

dies build their graph processing accelerators based on

FPGA[24−28] and ASIC[16,29−31]. Evaluation on these

accelerators has also demonstrated the efficiency and

effectiveness of DSA design[16,28,32].

It is time to review the past and the present of graph

processing accelerators, and further look into their fu-

ture development. In this paper, we conduct a syste-

matic review on graph processing accelerators. It aims

at exploring the key issues in the design and imple-

mentation of graph processing accelerators. As summa-

rized in Fig.1, we have identified a complete set of core

components for graph processing accelerators, which in-

volves three major aspects: preprocessing, graph para-

llel computation, and runtime scheduling.

• Preprocessing. A graph processing accelerator of-

ten has limited storage resources. Graphs are needed

to be partitioned. Preprocessing is an important com-

ponent that operates on graph data for trying to make

the graph dataset fit into the memory capacity of the

graph accelerator. It is also the key to match a certain

processing model and appropriate graph representation

before the formal processing.

• Parallel Graph Computation. The parallel graph

computation component serves as the main execution

part of graph processing accelerator design. Iterative

paradigm is often chosen to define a basic execution

pattern for graph iteration that will be mapped to a

pipelined hardware circuit. The implementation of this

part generally relies on some hardware platform, e.g.,

FPGA, ASIC, or Processing-In-Memory (PIM). Diffe-

rent specifications have different concerns on hardware

designs and sophisticated software co-designs for high

throughput and energy efficiency.

• Runtime Scheduling. This part aims at how to

schedule a large number of graph computational ope-

rations on a finite set of hardware resources of graph

processing accelerators. The basic metrics for runtime

scheduling are to guarantee the correctness and effi-

ciency of graph iteration. The runtime scheduling com-

ponent often involves data communication, execution

mode, and scheduling scheme.

Based on the three aforementioned aspects, we care-

fully examine the benchmarks and results of exist-

ing studies. We find that there is not a clear win-

1○http://www.riscv.org, Jan. 2019.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 341

Decicated Hardware Resources (ASIC, FPGA, HMC, ReRAM, Flash, etc.)

Edge-Centric Hybrid

ASIC PIM

Runtime Scheduling

E
v
a
lu

a
ti
o
n

BFS SSSP PageRank CC

Parallelism Memory Energy

Applications ...

Vertex-Centric

FPGA

Sophisticated

Co-Design

Hardware

Acceleration

Iterative

Paradigm

Graph Layout

Reorganization

Graph

Partitioning
Graph OrderingPreprocessing

P
a
ra

ll
e
l
G

ra
p
h

C
o
m

p
u
ta

ti
o
n

Fig.1. Building blocks for graph processing accelerators (with three major aspects: preprocessing, parallel graph computation, and
runtime scheduling).

ner for all these aspects in graph acceleration because

of the diverse characteristics of graph processing and

the complexity of hardware configurations. We there-

fore present and discuss several challenges in details,

and further explore the opportunities for the future re-

search. One of the major challenges in the existing

graph processing accelerators is that the programmabi-

lity is an important issue for users to express their graph

applications. Existing graph processing accelerators

typically require labor-intensive efforts for hardware-

level modifications.

Great challenges come with great opportunities.

Widespread graph applications have a strong de-

mand for energy-efficient graph processing accelerators.

Emerging memory devices, e.g., Hybrid Memory Cube

(HMC)[33], High Bandwidth Memory (HBM)[34], Resis-

tive Random Access Memory (ReRAM)[35] along with

new processing devices, provide us with great oppor-

tunities to explore new schemes for graph processing.

We believe that this survey summarizes these challenges

and opportunities, which can help realize the accelera-

tors with novel hardware-software co-designs.

The rest of this paper is organized as follows. Sec-

tion 2 includes an introduction to basic components

of graph processing, and briefly summarizes the recent

progress on CPUs and GPUs. Section 3 presents some

considerations in the preprocessing phase. Design and

implementation of parallel graph computation are re-

viewed in Section 4. Section 5 describes the runtime

and scheduler part of graph accelerators. Emerging

graph accelerators are reviewed and compared in Sec-

tion 6. Challenges and opportunities are given in Sec-

tion 7. Finally, this paper concludes in Section 8.

2 Preliminaries

In this section, we first give a brief introduction to

the preliminaries of graph processing, including graph

representation and several common graph algorithms.

Next, we summarize some unique characteristics of

graph processing, followed by the related work of graph

processing on commodity general-purpose processors.

The characteristics of graph processing and the related

work further motivate our survey work on graph pro-

cessing accelerators.

2.1 Graph Representation

Graph is a data structure consisting of vertices that

are further associated with edges. A graph can be typi-

cally defined as G = (V,E) where V represents the

vertex set and E indicates the edge set. For a directed

graph, an edge can be represented as e = (vi, vj), indi-

342 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

cating that there is an edge pointing from vi to vj . In

particular, a vertex and an edge can be also attributed

with a single or multiple attributes. Real-world natural

graphs, e.g., social networks, usually have the following

three common features.

• Sparsity. The average number of vertex degrees

is relatively small. The sparsity of graphs can result in

poor locality for data accesses.

• Power-Law Distribution. A few vertices have as-

sociated most of the edges. This can lead to a severe

workload imbalance issue with a large number of date

conflicts when high-degree vertices are being updated.

• Small-World Structure. Two arbitrary vertices in

the graph can be connected with only a small number

of hops. The small-world feature will make it difficult

for partitioning the graph efficiently (as to be discussed

in Subsection 3.3).

2.2 Graph Algorithms

We review several common graph algorithms with

different requirements in computation, communication,

and memory access. These graph algorithms are also

widely studied for the exprimental evaluation in the

previous studies[12,13,17].

Breadth-First Search (BFS) is a basic graph traver-

sal algorithm, which is used as the kernel of Graph500

benchmarks. The neighboring vertices are iteratively

accessed from the root vertex until all vertices of the

graph are visited.

Single Source Shortest Path (SSSP) is another

graph traversal algorithm that computes the shortest

paths from a source vertex to other vertices. Diffe-

rent from BFS, it has less redundant computations in

checking edges. Each vertex may be activated more

than once. Therefore, it needs more memory space than

BFS.

Betweenness Centrality (BC) is widely used to mea-

sure the importance of a vertex in a graph. The be-

tweenness centrality value of a vertex is calculated by

the ratio of the shortest paths between any other two

vertices. The BC algorithm requires to compute the

shortest paths between all pairs of vertices.

PageRank is one of the most popular algorithms,

which calculates the scores of websites[36]. It maintains

a PageRank value for each vertex. All the vertices are

activated in each iteration. It often needs large memory

bandwidth and float point computing ability.

Connected Components (CC) is widely used in im-

age regions analysis and clustering applications. Each

vertex maintains a label. If vertices are in the same

connected region, their labels are set to the same. The

algorithm updates the labels of all vertices iteratively

until converged.

Triangle Counting (TC) is used to measure the num-

ber of triangle cliques in the graphs. Each vertex main-

tains a list of neighbors, and iteratively checks if there

are shared neighbors between connected vertices of each

pair. The number of triangles is calculated by the over-

laps.

Graph Coloring (GC) is to assign colors to the ver-

tices of a graph so that any two adjacent vertices have

different colors. GC can be used in many areas, e.g.,

traffic scheduling, register allocation during compiling

and pattern matching. Basic GC algorithm iteratively

colors an active vertex with the color that has not been

assigned on any of its neighbours.

Collaborative Filtering (CF) is an important ma-

chine learning algorithm used for recommendation.

Given a bipartite graph where edge values represent the

ratings and vertices correspond to the users and items,

CF runs iteratively on the bipartite graph to find la-

tent features for each vertex, with all the vertices being

active in each iteration.

k-core Decomposition (kCore) is widely used for

structure analytics for large cloud networks. This algo-

rithm iteratively removes all the vertices with degrees

less than k such that k-core subgraphs are built. Each

vertex in a k-core subgraph is with a degree no less than

k.

Minimal Spanning Tree (MST) extracts a tree con-

taining all the vertices from an edge-weighted graph

with minimum weight. MST is popular in cable net-

work construction, cluster analysis and circuit design.

Prim’s greedy MST algorithm iteratively chooses the

minimum weight edge between vertices in and out of

the spanning tree to construct MST.

2.3 Unique Features of Graph Processing

As discussed previously, real-world graphs have the

“power-law” distribution and the “small-world” fea-

ture. Besides, graph algorithms differ in computational

and memory access requirements. Graph processing

generally manifests the unique features as follows.

• Intensive Data Access. On the one hand, graph

applications usually lead to a large number of data ac-

cess requests. On the other hand, graph processing has

a high data-access-to-computation ratio, that is, most

of the operations in graph processing are related to data

accesses.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 343

• Irregular Computation. Due to the power-law dis-

tribution, computation workloads for different vertices

may vary in a large scale. This will cause severe work-

load imbalance issue and communication overhead.

• Poor Locality. Data accesses of graph processing

are usually random because each vertex may connect

to any other random vertices. This feature often leads

to heavy overhead of memory accesses.

• High Data Dependency. The data dependency

is caused by the nature of connections of vertices in

graph. Heavy dependencies make it difficult to explore

the parallelism in graph processing. This may cause

frequent data conflicts.

2.4 Brief Introduction to Graph Processing on

Modern Commodity Processors

Many graph processing systems have been explored

on modern commodity general-purpose processors, e.g.,

CPUs and GPUs. We briefly introduce the related work

to motivate our study, and refer readers to recent sur-

veys for more details[37−39].

• Graph Processing on CPUs. There is a large

amount of work that aims at building an efficient sys-

tem for graph applications on CPUs. Basically, they

can be divided into two categories. The first kind is

the distributed systems[40−45], which leverage the clus-

ters to support massive graph data. However, this

usually suffers from communication overhead, synchro-

nization overhead, fault tolerance, and load imbalance

issues[46−49]. Emerging servers can hold most of the

graph data in the large main memory. Thus, there is

an amount of work that exploits the potential of single

machine[3,50−52]. There are also many disk-based graph

processing systems[4,5,53−56] which can avoid parts of

the challenges in the distributed systems. Recently,

Many Integrated Core (MIC) architecture based pro-

cessors have been also explored to improve the perfor-

mance and efficiency of graph processing[57].

• Graph Processing on GPUs. GPU is adopted to

pursue high performance of graph processing due to

its data parallel capability. A number of graph pro-

cessing systems with GPUs[6−8,58] have been proposed

for high-performance graph processing. Enterprise[11]

is developed to accelerate the performance for the

BFS algorithm only. There is also plenty of work

on accelerating CC algorithm[59], BC algorithm[60,61],

and SSSP algorithms[62]. Domain-specific graph pro-

cessing frameworks have been presented to provide

high efficiency for the development on GPUs[63].

To support large-scale graphs, hybrid CPU-GPU

systems[64,65], multi-GPUs systems[19,66] and out-of-

memory systems[67,68] have been proposed.

Remarks. Despite a significant amount of ef-

fort in improving the graph processing performance

on general-purpose processors, e.g., CPUs and GPUs,

existing graph systems are still far from ideal to

exploit the hardware potential of general-purpose

processors[15,16]. This is due to a significant gap be-

tween the general-purpose architectures and the unique

features of graph processing. The graph processing ac-

celerator is necessary as an alternative approach that

might be able to fill this gap.

Nevertheless, existing studies on CPUs and GPUs

have a wealth of experiences in designing graph accele-

rators (as discussed in the previous studies[28−30,32]).

Various kinds of software graph processing models have

been proposed to effectively express graph applications

in a generic framework. Partitioning methods, out-of-

memory processing and hybrid architectures schemes

have been explored to support large-scale graphs.

We next illustrate three aspects of core components

of graph accelerators, including preprocessing, parallel

graph computation, and runtime scheduling.

3 Graph Preprocessing

The data size of real-world graphs can easily exceed

the on-chip/board memory capacity of graph process-

ing accelerators, which is a significant challenge for ac-

celerators. This issue can cause large amounts of I/O

and communication cost. In order to make data access

efficient, preprocessing of graph data is often required

to adapt the data structure onto the target graph ac-

celerators. In this section, we will review the following

major graph preprocessing methods used in the designs

of graph processing accelerators.

• Graph Layout Reorganization. Graph layout is

an important factor to affect the graph processing effi-

ciency. Most previous studies have attempted to reor-

ganize the layout to improve data accessing efficiency

from many distinct aspects, e.g., data locality, memory

storage, and memory access patterns.

• Graph Ordering. Graph ordering aims to change

the order of the vertices or the edges, such that data

locality with less data conflicts can be obtained while

the structure of the graph remains the same[27,69].

• Graph Partitioning. Graph partitioning is to di-

vide a large graph into multiple disjoint small sub-

graphs. It usually allows parallel processing of the sub-

graphs. The processing on each sub-graph has most

344 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

of data accesses on the corresponding graph partition.

This is particularly useful for improving the cache lo-

cality or when the memory of the accelerator cannot

hold the entire graph.

3.1 Graph Layout Reorganization

We will introduce the baseline graph layouts first.

There are generally two widely-used categories of base-

line graph layouts, i.e., edge array and compressed adja-

cency list. In graphs based on the edge array, each ele-

ment of the array contains a pair of integers, i.e., source

vertex index and destination vertex index. It is conve-

nient to read the edges sequentially from memory. The

edge array layout remains widely used in many graph

processing systems, especially for the edge-centric pro-

cessing systems. Another improved edge array layout is

Coordinate List (COO). It has been widely adopted in

graph accelerators[27,28,70]. It has the edge attributes

that are stored along with the edges.

Compressed adjacency list graph originates from the

adjacency matrix. It typically uses three arrays to store

the graphs, i.e., the vertex property array of the graph,

the edge array with the edges’ outgoing/incoming ver-

tex indices only, and the edge array starting indices of

each vertex in the graph. Suppose outgoing edges are

used in the edge array, we name this adjacency list for-

mat Compressed Sparse Row (CSR). If incoming edges

are used in the edge array, this layout is called Com-

pressed Sparse Column (CSC). The compressed adja-

cency list graph is relatively compact and beneficial to

many graph accelerators[29,71]. Note that the edges of

each vertex are stored sequentially.

Based on the baseline graph layouts, we have also

many novel methods to compress the data size and op-

timize memory access further.

• Combining Information. Existing work tends to

combine multiple information in the same file of graph

data layout so that the data locality can be optimized,

and random memory access can be reduced.

For instance, [72] proposes to associate the desti-

nation vertex property with the edge information such

that the vertex property can be sequentially accessed

to edges with a good locality. Authors of [25] opted to

modify the row pointer array representation in a typical

CSR format. They combined the vertex status (1 bit

for BFS only) and the vertex’s neighboring information

in an element of the array. This method improves the

memory access efficiency significantly.

• Encoding Index. Using an encoding method can

compress the graph layout to a small size. Thus, large

graphs can be processed on a single accelerator. This

is usually done for the index of vertices and edges.

For example, GraphH[73] proposes to squeeze the

blank vertex indices by re-indexing the vertices of the

graph when the number of vertices is smaller than the

maximum vertex index. The index can also be com-

pressed by grouping them with a coarsen ID and using

less bits to represent the same graph as presented in [16,

28]. It is also possible to reduce the edge information

with frequency-based encoding[74].

Remarks. The baseline graph layouts are useful to-

wards graph accelerators, but they can still be improved

for different memory system designs in hardware accel-

erators. We still have the potential to explore the graph

layouts at the aspects of data locality, memory access

patterns, and memory footprint.

3.2 Graph Ordering

A number of graph ordering methods have been ex-

plored and demonstrated to be effective.

• Index-Aware Ordering. It typically targets at the

edge array layout. The basic idea is to sort the edges

based on either the source vertex indices or the des-

tination vertex indices. Sorting the edges in an as-

cending manner generally improves the data locality

because the neighboring vertex property can be pre-

fetched and probably reused[73]. In the graph process-

ing, source vertex property will be read and destination

vertex property will be updated accordingly. Therefore,

reading overhead can be reduced if the edges are sorted

by source vertices. Similarly, the writing process can

be more efficient if the edges are sorted by the desti-

nation vertices[27]. As demonstrated in [16, 26, 28], a

hybrid index-aware sorting method that balances both

the source vertices and destination vertices can outper-

form the methods that only consider the source vertex

or the destination vertex.

• Degree-Aware Ordering. This method takes the

vertex degree as the sorting metric. Sorting the ver-

tices based on vertex degree in descending order brings

multiple benefits[74]. As high-degree vertices are more

likely to be accessed, good data locality can be ob-

served if high-degree vertices are placed nearby. In ad-

dition, it balances the workloads as well[75] when the

graph is processed in parallel. The degree-aware order-

ing method applies to both baseline graph layouts[76],

i.e., the edge array and the compressed adjacency list.

• Conflict-Aware Ordering. This method is to re-

duce the data access conflict during parallel graph

processing. ForeGraph[28] proposes to interleave the

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 345

edges such that memory-level parallelism can be ex-

plored more efficiently. Different from the interleaving

method, AccuGraph[15] reorders the edges of the whole

graph such that the destination vertices of the edges

read in each cache line are distributed evenly over the

on-chip memory banks. In this case, the parallel desti-

nation vertex updating has fewer conflicts.

Remarks. Graph ordering methods focus on chang-

ing the order of the graph data organization. The re-

ordered graph can be directly used by the graph ac-

celerators without any modification. Nevertheless, the

graph ordering usually requires global sorting and the

pre-processing overhead, which can be costly.

3.3 Graph Partitioning

Graph partition makes it possible to fit the graph

into the limited on-chip memory of a graph accelerator.

The major graph partition strategies in graph accelera-

tor designs can be roughly divided into four categories

as shown in Table 1.

Table 1. Partitioning Schemes of Graph Accelerators

Partitioning Scheme Graph Accelerator

Source-oriented [15, 27, 69, 77–80]

Destination-oriented [16, 26, 30, 73, 81]

Grid [28, 70, 82]

Heuristic [29, 31, 32, 75, 76, 83, 84]

• Source-Oriented Partition. The source-oriented

partition methods typically have disjoint source vertices

in each partition. All outgoing edges are associated

with the partition’s source vertices. The destination

vertices will be included in the corresponding partition.

Particularly, the source vertex indices in each partition

are usually continuous to ensure sequential memory ac-

cesses. With the source-oriented partition, it is conve-

nient to determine the partitions that need the updated

vertex property in the graph processing. Nevertheless,

different partitions may be in conflict with destination

vertex update. To address this problem, [27] proposes

to synchronize through messages and resolve the data

dependency through a specific computing unit.

• Destination-Oriented Partition. The destination-

oriented partition is similar to the source-oriented par-

tition. Basically the partitions have disjoint destination

vertices. Therefore, each partition can be updated in-

dependently while reading the source vertex property

for each partition is mostly random. Graphicionado[16]

adopts this partition method to ensure that each par-

tition can be fitted to the small scratchpad memory.

Low-latency high-bandwidth scratchpad memory can

be fully utilized. GraphP[81] also applies this parti-

tion. GraphP[81] aims at reducing the communication

between the partitions on different accelerators such

that the communication among the HMC cubes can

be improved.

• Grid Partition. The grid partition of graph

in graph processing systems was first introduced in

GridGraph[55] which presented an efficient graph data

layout and was widely absorbed into designs for graph

processing accelerators[28,70]. Grid partition is essen-

tially a two-dimensional partition method, which can be

considered as an extension of the one-dimensional par-

tition, like source-oriented partition and destination-

oriented partition[28,70]. First, it divides both the

source vertices and the destination vertices into conti-

nuous segments. Then it forms a two-dimensional array

of cubes. Each cube includes the source vertex set, the

destination vertex set, and all the edges whose source

vertices and destination vertices belong to the source

vertex set and the destination set, respectively. The

grid partition produces finer grained partitions. The

partitions have both sequential source vertices and des-

tination vertices. ForeGraph[28] uses this method to

make best use of the limited on-chip memory of FPGAs.

In particular, it optimizes the read order of partitions

such that the partition loading and processing can be

overlapped. This method is also used in GraphR[70]

and helps explore the ReRAM features for both high-

performance and low-power graph acceleration.

• Heuristic Partition. Unlike the above partition

methods, many heuristic graph partition methods have

been intensively explored, especially for conventional

CPU-based graph processing systems. These partition

methods follow various heuristic metrics to reduce the

communication, to improve locality, or to provide bet-

ter load balance. Some of them are also applied for

the graph accelerator design. For example, a hash-

based partition algorithm is used to achieve partitions

with balanced vertices and edges in [29]. A clustering-

based partition algorithm is adopted for better locality

in [76]. A multi-level partitioning algorithm is adopted

in FASTCF[75] and is also demonstrated to be efficient

for stochastic-gradient-descent-based collaborative fil-

tering.

Remarks. Graph partition brings multiple benefits

to graph accelerator design. In particular, it allows the

graph accelerator to explore the small yet low-latency

high-bandwidth on-chip memory.

346 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

Graph preprocessing benefits the graph accelerator

on many aspects including better data locality, more ef-

ficient memory access patterns, higher task-level paral-

lelism, and even fewer memory accesses. In general, it is

a critical step to improve the performance of the graph

processing accelerators, and even affects the accelerator

design choices. While some preprocessing approaches

are extremely time-consuming, it is still an open prob-

lem on how to achieve a better balance between the

overhead and the performance benefits in many practi-

cal scenarios as pointed out in [13].

4 Parallel Graph Computation

The core component of a graph processing ac-

celerator is how to handle the preprocessed graph

data in Section 3 with massive parallellism. Consi-

dering intertwined data dependencies of graphs, this of-

ten requires non-trivial technical innovation, involving

matched parallel iterative paradigms, dedicated hard-

ware acceleration and sophisticated co-codesigns. Fig.2

outlines the taxonomy of parallel graph computation.

• Iterative Paradigm. Iterative paradigm is used to

express the process of how vertices and edges run. It

defines the basic data access and computational pattern

of graph program. Typical iterative paradigms in exist-

ing graph accelerators can be categorized into three ap-

proaches: the vertex-centric approach, the edge-centric

approach, and the hybrid approach. They decouple the

associated dependencies within graphs as many as pos-

sible, and further explore the potential parallelism of

graph processing.

• Dedicated Hardware Acceleration. Different kinds

of dedicated hardware platforms can be used to accele-

rate graph analytics. Existing graph processing accele-

rators are basically built upon three types of hardware

platforms: FPGA, ASIC, and PIM. These emerging ar-

chitectures can be used to architect efficient memory

hierarchy and computing units for higher performance

and energy efficiency.

• Sophisticated Co-Designs. Sophisticated co-

designs usually combine the hardware and the soft-

ware optimizations to exploit the hardware potentials.

They often focus on three aspects: parallelism exten-

sion, memory access optimization, and energy efficiency

optimization. Most of these co-designs can be com-

monly used on different kinds of hardware to achieve

high performance and energy efficiency.

4.1 Iterative Paradigm

The graph has complex data dependencies between

vertices. Designing efficient iterative paradigms is im-

portant to decouple these associated dependencies as

Parallel Graph
Computation

Iterative Paradigm

Dedicated Hardware
Acceleration

Sophisticated

Co-Designs

Vertex-Centric

Edge-Centric

Hybrid

FPGA-Based Designs

ASIC-Based Designs

PIM-Enabled
Designs

Parallelism Extension

Memory Access
Opimization

Energy-Efficiency
Optimization

Single Board Processing

Heterogeneous Processing

Multi-FPGAs Processing

HMC-Assisted Processing

Computing Units Design

Memory Hierarchy Design

HMC-Assisted Processing

ReRAM-Assisted Processing

Pipeline Duplication

Split Kernel

Using Dataflow Paradigm

Enhancing MLP

Improving Bandwidth

Utilization

Reshaping Cache

Architecture

Leveraging Emerging Memory

Power-Gating Scheme

Multiple Banks

Multiple I/O Ports

Coalescing Method

Streaming Edges

Scratchpad Memory

Locality-Aware Buffer

Execution-Aware Prefetching

Fig.2. Taxonomy of parallel graph computation.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 347

many as possible by exploring the common computa-

tional pattern surrounding vertices and/or edges. Ex-

isting iterative paradigms for graph processing can be

basically divided into two subcategories: the vertex-

centric approach and the edge-centric approach. The

vertex- and edge-centric approaches not only concern

the expressiveness and abstraction of graph algorithms

but also impact the design of graph data layout, pre-

processing and computation. A few graph accelerators

also have made a hybrid attempt for embracing the best

worlds of both modes. Table 2 summarizes the related

work with different iterative paradigms.

Table 2. Iterative Paradigms of Graph Accelerators

Iterative Paradigm Graph Accelerator

Vertex-centric [14–16, 25, 26, 29-32, 71, 74, 76, 78, 81,

83–91]

Edge-centric [27, 28, 70, 72, 73, 75, 82, 92–94]

Hybrid [80]

Programming Model. Programming model is used

to effectively express the graph algorithms. It abstracts

the common operations in various graph algorithms and

alleviates the effort for programmers to write their ap-

plications. According to the iterative paradigms, there

are vertex-centric programming model and edge-centric

programming model. These two models can be com-

bined as the hybrid model to take advantages of both

paradigms.

• Vertex-Centric Programming Model. Graph al-

gorithms expressed with this model handle the graphs

by following “think like a vertex” philosophy[1]. It

describes a graph program for each vertex, including

computational operations and data transmission be-

tween their neighbors via edges. Since each vertex is

processed independently, parallelism can be therefore

guaranteed by simultaneously scheduling these vertices

without data dependencies.

• Edge-Centric Programming Model. X-Stream[5] is

the first work to use edge-centric programming model

to handle graph edges. Unlike the vertex-centric model,

this model describes a graph program for each edge. An

edge is processed with three steps: 1) collect the infor-

mation of its source vertices, 2) update its value, and

3) send this value to its destination vertices. It is clear

that this model removes the random accesses to edges

via sequential streaming of each edge to the chips.

• Hybrid Programming Model. Alternative is to

use a hybrid method by switching between vertex-

and edge-centric programming models for the purpose

of taking advantages of both models[80]. The vertex-

centric model is responsible for the situation when the

active vertex ratio is relatively high. In contrast, the

edge-centric model is intended to cope with the case

that active vertex ratio is relatively low. Clearly, model

switching decision can be made according to the active

vertex ratio (among all vertices). The threshold can be

decided by the ratio of bandwidth.

Data Layout Selection. Systems implemented in the

vertex-centric approach typically iterate over the active

vertices and execute the vertex program on them at

each iteration. For each given vertex, its neighbours

are visited to complete the computation. This kind of

implementation usually requires a fast scan for edges of

given vertices. As a consequence, as presented in Sub-

section 3.1, the compressed adjacency lists (CSR/CSC)

are suitable for the vertex-centric model because the

associated edges of a vertex can be found easily[4,29].

Similar to the edge-centric approach, which iterates

over all the edges to implement the edge program for

each of the edge, a fast sequential scan of edges is de-

manded. To process an edge, the information of the end

vertices also needs to be indexed directly. Therefore,

the edge array presented in Subsection 3.1 intuitively

fits for systems in edge-centric approach[5,27].

Preprocessing Considerations. Initially, the graph

data is usually stored in the disk as edge files where the

edge is represented as a pair of corresponding source

and destination vertices. During the preprocessing

phase, edge files are converted into the appropriate data

layout according to programming models. As discussed

in Section 3, preprocessing involves graph partitioning,

reorganization and ordering. The complexity of prepro-

cessing also varies for different data layouts.

For the vertex-centric approach, the edge file is

converted into the format of adjacency lists. Typi-

cally, the edges are sorted by the source or destina-

tion vertex followed by index creation that maintains

the edge position in the edge array for each vertex.

As for edge-centric approach, the edge array is usually

loaded directly without specialized data formatting and

conversion[5,27]. A detailed research about the cost on

preprocessing is presented in [13]. Generally, the pre-

processing cost of the vertex-centric approach is higher

than the edge-centric one.

Computation Overhead. The vertex- and edge-

centric approaches have different computation patterns

as discussed before. In the vertex-centric approach,

the computation is executed for each vertex which ite-

rates over the neighbors of a given vertex. In the edge-

348 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

centric approach, the edges are executed as a stream.

At this point, the workload characteristics and cache

(miss-rate) metrics are significantly different for the two

approaches[13].

For workload analysis, the vertex-centric approach

supports selective scheduling on only a subset of ver-

tices for each iteration while the edge-centric approach

requires a scan of the whole edges, which means that

the edge-centric approach induces more computations

than the vertex-centric approach.

Cache behaviours are also different between these

two approaches. In the vertex-centric approach, the

processed vertices can be (locally) cached while it intro-

duces more random accesses by traversing the frontier.

In the edge-centric approach, edges can be prefetched

for better use of cache, but it causes more random ac-

cesses to vertices. Their actual performance may be

significantly different, and largely depends on the in-

herent topology of the graph and features of graph al-

gorithms.

Generally, the vertex-centric approach introduces

more random accesses to edges while the edge-centric

approach causes more random accesses to vertices. To

improve the cache behaviours, optimizations can be ap-

plied to these two models, e.g., organizing edge arrays

into grids can improve the cache locality[55].

Discussions. Table 3 compares different paradigms

from multiple aspects. It is difficult to judge which ap-

proach is better because the performance is usually not

the same case when different kinds of graph applications

are introduced. The authors in [13] made a comprehen-

sive comparison of these two approaches when different

approaches and graph algorithms are included.

Vertex-centric paradigm has been widely used to

drive many graph accelerators[16,26,29,88], because of its

expressive potentials to easily represent various kinds of

graph algorithms, and the high parallelism in the grain

of vertex. However, in the vertex-centric paradigm,

there can be random accesses to edges, resulting in po-

tentially heavy memory access overhead.

Edge-centric paradigm is usually used by existing

graph accelerators for improving the utilization of their

limited memory bandwidth[27,28,75]. However, the point

is that edge-centric paradigm is lack of flexible schedul-

ing potential in contrast to the vertex-centric one. Al-

most all of edges have to be processed multiple times to

complete the whole process. In addition, this paradigm

may also lead to a large number of random accesses to

vertices. Thus, additional optimizations are often co-

operatively needed, e.g., fine-grained partitioning and

tailored vertex update strategies[28,70].

For graph processing accelerators, the selection and

design of iterative paradigm for graph processing accele-

rator must also ensure that: 1) programming is easy

to use and understand for graph algorithm representa-

tion; 2) parallelism is easy to expose and exploit for

high throughput and fast hardware development. It is

also important to dedicate the accelerators according to

the features of applications. Note that advantages can

be combined by incorporating hybrid approaches into a

design for better performance.

4.2 Dedicated Hardware Acceleration

Existing graph processing accelerators can be built

upon various kinds of hardware platforms. Typical

hardware accelerators usually adopt only the tradi-

tional customized hardware platforms, i.e., FPGAs and

ASICs, and have made few modifications on exist-

ing computing logic and memory architectures (e.g.,

DRAM). Some accelerators have re-built their archi-

tectures with in-situ computation without excessive

data movement, e.g., HMC and ReRAM devices, which

is also known as PIM-enabled accelerators. Different

hardware configurations have different considerations

for performance acceleration. We next review techni-

cal advances of these state-of-the-art graph processing

accelerators.

4.2.1 FPGA-Based Designs

FPGA is an integrated circuit that enables design-

ers to repeatedly configure digital logic in the fields af-

ter manufacturing, also called field-programmable. The

Table 3. Overview of Different Iterative Paradigms

Iterative Paradigm Programming Model Data Layout Preprocessing Computation Overhead

Vertex-centric Iterate over vertices CSR/CSC Partitioning; ordering;
reindexing; higher cost

Frontier-based; random
accesses to edges

Edge-centric Iterate over edges Edge array/COO Partitioning; ordering;
lower cost

All edges need to be
scanned; random accesses
to vertices

Hybrid Mix of vertex- and
edge-centric model

Mixed data structures Sophisticated
preprocessing

Model switch

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 349

configuration of FPGAs is generally specified via low-

level hardware description languages, e.g., Verilog[95]

and VHDL[96]. FPGAs are mostly adopted in graph

processing accelerators.

Internal Characteristics of FPGAs. There are diffe-

rent kinds of programmable resources on FPGAs, e.g.,

programmable Logic Element (LE), Static Random Ac-

cess Memory (SRAM), and Flash and Block RAM

(BRAM). However, the fact is that these resources are

usually limited to a small number. FPGA can offer

high parallelism by architecting these resources with

a pipelined Multiple Instructions Single Data (MISD)

model. Multiple data can be processed simultaneously

at different pipeline stages. Multiple pipelines can be

easily duplicated for parallel processing.

Existing Efforts on FPGAs. A graph program is

usually designed into a circuit kernel as the basic pro-

cessing unit according to the programming model (as

discussed in Subsection 4.1), which defines the exe-

cution pattern[75,87]. These kernels can be easily recon-

figured on FPGAs for different algorithms. For build-

ing the efficient memory subsystem, a wide spectrum

of previous studies make non-trival efforts for the effi-

cient bandwidth utilization of on-chip BRAMs and the

off-chip memories. BRAMs provide high bandwidth

and low memory latency for randomly accessed ver-

tices. For improving the locality of vertices on BRAM,

fine-grained partitioning and dedicated data placement

strategies are needed to increase the reuse rate of ver-

tices on BRAM[26,28,74]. As for improving the utiliza-

tion of off-chip bandwidth, edges can be streamed se-

quentially from the memory[27].

A number of studies extend to integrate multi-

ple FPGAs into a cluster so as to support large

graphs[25,71]. FPGAs with integrated soft-cores are

also presented, which can process the graphs in a dis-

tributed manner on a single FPGA board with high

parallelism[84]. Heterogeneous architectures are also

adopted where FPGA and CPU are connected through

cache-coherent interconnect. FPGA can access the host

memory without the interruption of CPU. These two

processors can easily cooperate with each other to pro-

cess large graphs with higher parallelism than a single

FPGA board[80].

There are also a number of studies that aim at

exploring the out-of-memory execution on FPGAs for

large graphs. The data can be directly streamed

from the disks or flashes to the processing units on

the FPGA board in these scenarios[26,28]. Recently,

Near-Data Processing (NDP) has been cooperatively

used to enhance the power of FPGAs for graph pro-

cessing by off-loading workloads to the integrated

HMCs. This provides significantly high bandwidth and

parallelism[71,76,97].

4.2.2 ASIC-Based Designs

ASIC is an integrated circuit composed of electrical

components, e.g., resistors. It is usually fabricated on a

wafer composed of silicon or other semiconductor ma-

terials that are customized for a particular use. ASICs

are very compact, fast, and low power. Compared with

FPGAs, their functions are hard-wired at the time of

manufacture. It is not allowed to change the functiona-

lity of a small part of the circuit.

ASIC Designs for Graph Analytics. Due to the fixed

circuit limitation, ASIC-based graph processing usu-

ally utilizes the expressive Gather-Apply-Scatter (GAS)

model[40] to form the circuit[29,30]. Each phase is im-

plemented as a hardware module, and runs in parallel

with wires that connect different modules. In order

to support various graph algorithms, a reconfigurable

block can be integrated for users to define the update

functions for flexibility.

As for the memory hierarchy, these graph accelera-

tors commonly adopt the scratchpad memory to replace

traditional cache. The scratchpad memory acts as a

content addressable cache and can be controlled manu-

ally. Graphicionado[16] uses eDRAM as the scratchpad

memory to store graph data that needs frequent ran-

dom accesses, e.g., the destination vertices. Dedicated

caches of different kinds of graph data are designed in

[29] according to the access features. Since these mem-

ory resources can be tightly connected to the processing

units in an efficient way, ASIC-based graph accelerators

can achieve high throughput on the chip.

4.2.3 PIM-Enabled Designs

Different from traditional hardware designs, re-

search on PIM-enabled architectures usually adopts

emerging paradigms for achieving impressive perfor-

mance results by integrating processing units into the

memory. It can provide the extremely high bandwidth

and low memory access latency with energy saving.

The PIM-enabled acceleration is often implemented by

leveraging emerging memory devices, e.g., HMC and

ReRAM, both of which integrate the in-situ computa-

tion in the memory.

HMC-Assisted Graph Processing. HMC has multi-

ple DRAM dies stacked on top of a logic layer that can

provide the ability of computation with high memory

350 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

access parallelism and sufficient instructions for sup-

porting graph processing. As in Fig.3, the DRAM dies

are connected via the Through-Silicon-Via (TSV). Sto-

rage space in HMC is organized as vaults. The vault

is a vertically connected stack of multiple partitions

from different DRAM layers. The logic layer is also

distributed to different vaults. With multiple DRAM

channels for each vault, HMC can provide significantly

high memory-level parallelism. HMC can also be easily

scaled to consist of a cluster topology of HMCs[98].

DRAM

Layers

Logical Layer & Crossbars

Vault

TSVs

Serializer-Deserializer (SerDes) Buffer

Response Links

...

Fig.3. Illustrative example of HMC architecture.

The logic layer of each vault can work as a soft-

core with sufficient instruction sets. For better sup-

porting graph processing, instructions have to be re-

constructed. Tesseract[32] integrates common instruc-

tions of graph algorithms and achieves high perfor-

mance through multiple HMCs. GraphPIM[14] deigns

specialized atomic instructions in HMCs. Besides,

graphs are processed in a distributed manner between

HMCs. Vertex-cut partitioning is also used to reduce

the communication cost between HMCs[73,81].

ReRAM-Assisted Graph Processing. ReRAM is a

kind of non-volatile RAM with the enabled comput-

ing ability by changing the resistance across a dielec-

tric solid-state material[35]. A ReRAM cell is with high

density, low read latency and high energy efficiency[99].

The ReRAM cells can be connected as a dense crossbar

architecture to provide high parallelism and memory

capacity. Generally, the graph can be represented as

a matrix which can be naturally mapped to ReRAM

cells. Each cell stores an edge or a vertex. When input

voltages are applied to certain rows of the cell arrays,

the stored values of each row will multiply the relevant

input value. The stored values of each column will be

then added together. These features make it possible

to realize efficient graph processing on ReRAM.

The potential of ReRAM for efficient computation

and storage is still under-studied significantly. To the

best of our knowledge, GraphR[70] is the first work to

use ReRAM to speed up the graph computation. It

transfers the vertex program or the edge program in

graph processing to a Sparse Matrix-Vector Multiplica-

tion (SpMV) format. However, graph algorithms need

to be manually justified for mapping the computational

pattern of ReRAM. It is worth noting that there is also

a trade-off between the utilization and the throughput

due to the limited ReRAM cell size. An ideal situation

is that every entity within a matrix is useful for com-

putation for high parallelism. Nevertheless, due to the

sparsity of graph data, in a ReRAM block there may

be only a few useful edges that are non-zero, causing

the fact that a large number of ReRAM cells are under-

utilized. Extra efforts are still needed to balance this

trade-off.

Summary. Considering the reconfigurable feature,

FPGA-based designs can handle various kinds of graph

algorithms flexibly. FPGA can also provide sufficient

interfaces to process large graphs for scale-out effi-

ciency. Massive parallelism can be easily achieved when

these resources are in good use. Unfortunately, the re-

sources on FPGAs are limited for existing commodity

FPGA boards. The frequency is also relatively low to

maintain correctness of execution. These may influence

the performance of graph processing.

ASIC designs can provide efficient hardware organi-

zations without the limitation on types and numbers of

hardware resources. ASICs can be designed in a rela-

tively efficient way. For example, dedicated and ac-

curate resources placement in ASCIs can be achieved

while FPGAs usually have redundant and wasted re-

sources on board. Besides, ASIC can achieve a higher

frequency than FPGAs. High performance can be eas-

ily attained. However the ASIC chip, once made, is

unable to be modified. It is usually difficult for ASICs

to handle various graph problems. It is also difficult for

ASICs to scale out.

PIM-based accelerators can scale well in both of

the bandwidth and the memory capacity. This fea-

ture can benefit the graph processing when large graphs

are handled. The emerging memories adopted in PIM-

based accelerators usually have lower energy consump-

tion than traditional DRAM. To handle generic graph

analytics, HMC provides the computing ability by spe-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 351

cial instruction sets executed in the logic layer. ReRAM

processes the graphs in the SpMV format with corss-

bars. These supports usually need many manual efforts

to realize. There is still a lot of research space for PIM-

based graph accelerators. For example, the bandwidth

can be underutilized due to the communication over-

head in HMCs.

4.3 Large-Scale Graph Processing

Acceleration

Real-world graph data size can easily exceed the

on-chip/board memory capacity of graph processing

accelerators. Most of existing accelerators only con-

sider the case that the whole graph fits into the no-

chip/board memory. However, how to deal with larger

graphs on accelerators is a vital issue for practical ap-

plications. There is an amount of work that has taken

this issue into account, and a series of solutions are fur-

ther proposed[25,26,28,32,80,94]. These solutions can be

typically divided into three categories: the out-of-core

solution, the multi-accelerators solution, and the hete-

rogeneous solution.

1)Out-of-Core Solution. Unlike traditional CPU ar-

chitectures that involve large main memory and often

develop the out-of-core solutions based on the disks,

graph accelerators typically have relatively small on-

chip/board memory capacity. Therefore, toward graph

accelerators, using any external storages or memories

that can store large real-world graphs can be consi-

dered potentially-useful as their out-of-core solutions.

Graph accelerators can use disks, flashes or other ex-

ternal storage devices to store extremely large-scale

graphs[4,5,26,55,94]. However, one of the most impor-

tant issues for utilizing these devices is to reduce

the transmission cost of I/Os between the disk and

DRAM since the bandwidths of these devices are of-

ten significantly lower than those of DRAM. Stream-

lined processing schemes[5,94] and sophisticated parti-

tioning methods[26,55] can be explored to effectively re-

duce the overhead of memory accesses to these exter-

nal devices. Recently, utilizing embedded processors

or accelerators in SSDs has been proved to be another

promising way to alleviate the overhead of data trans-

mission and conversion[100−102].

Compared with disk-based solutions, utilizing

large host memory enables graph accelerators to

process large-scale graphs with better bandwidth-

efficiency[27,86,97]. Emerging computing platforms of-

fer the great opportunity for graph accelerators to

access the main memory conveniently via specialized

interconnections[103]. However, it is also vital to op-

timize the I/Os between the graph accelerator and

the main memory, since long memory latency for data

movement often dominates the overall efficiency due

to slow I/O interfaces and extra efforts on memory

management[104]. Existing memory subsystems and

their memory access parallelism are strongly in need

of technological innovation.

There also have emerged some studies regarding

graph processing accelerator designs for large-scale

graph processing. FPGP[26] incorporates the disks to

extend the storage of FPGA and designs a streamlined

vertex-centric graph processing framework to improve

the utilization of the sequential bandwidth of disks.

A dedicated on-chip cache mechanism is used to re-

duce the accesses to disks. Then the large graph is

specially partitioned in order to fit for the process-

ing scheme. GraFBoost[94] adopts the flash to scale to

much larger graphs and mainly focuses on optimizing

the random accesses. The key component is a sort-

reduce module that converts small random accesses

into large block sequential accesses to the flash sto-

rage. It is mentioned that GraFBoost[94] embeds the

accelerator into the flash for better scalability. Simi-

lar methods have been explored to accelerate the pro-

cessing in database[105,106]. ExtraV[97] further incorpo-

rates the main memory to improve the graph process-

ing with SSDs. Note that host processors can be used

together with their self-contained main memory in a

heterogeneous solution to enhance the power of graph

accelerators.

2) Multiple Accelerators Extension. The whole

graph needs to be partitioned to distribute different

on-chip/board memories of each graph processing ac-

celerator. By considering the prohibitive communica-

tion overhead between graph accelerators, the multi-

accelerator solution often needs the high-bandwidth

connection between graph accelerators. The most im-

portant issue for this design is how to achieve a cost-

efficient communication mechanism, and avoid data

conflicts between graph accelerators. As a conse-

quence, the appropriate graph partition methods are

required and are important to reduce the communi-

cation overhead[28,32,81]. The inter-network design of

graph accelerators is also vital to support the efficient

cooperative computing[25,73].

CyGraph[25] runs BFS under a high performance re-

configurable computing platform, Convey HC-2, which

constructs a platform with FPGAs connected through

352 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

a full crossbar to multiple on-board memories. These

memories are connected as a shared memory that pro-

vides large capacity and high total bandwidth. Cy-

Graph optimizes the CSR representation to reduce the

shared memory accesses and connects FPGAs using a

ring network to minimize the conflicts. ForeGraph[28]

instead uses separated memories for each FPGA. Thus

it avoids the memory access conflicts among accel-

erators. These FPGAs are connected via dedicated

inter-connections. Grid-like partitioning[55] and dedi-

cated on-chip data replacement schemes are adopted to

achieve better locality for each FPGA board and thus

reduce the communications.

As discussed in Subsection 4.2, emerging devices like

HMCs not only provide the capability of processing

in memory but also scale well. The cost on commu-

nications among different HMC cubes dominates the

performance[32,73,81]. GraphP[81] utilizes a source-cut

partitioning method to significantly reduce the com-

munication overhead. Generally, the multi-accelerator

solution is similar to distributed processing under tradi-

tional platforms such that many optimizations on dis-

tributed graph processing can be applied to accelera-

tors. Meanwhile, the features of different architectures

need to be considered to provide the best scenario.

3) Heterogeneous Acceleration. As the rapid

development of memory integration technologies (e.g.,

3D stacking), the host memory becomes large or even

huge with trillions of capacity[3,50]. As a consequence,

leveraging the host-side memory is alternative to sup-

port large-scale graph processing. An intuitive and im-

portant question is how graph processing accelerator

can interact with the host machine conveniently and

efficiently. At present, efficient heterogeneous solutions

are still open questions. A few studies propose to use

the coherent memory interconnect technology to accele-

rate graph workloads with CPU and FPGA[80]. For

supporting efficient cooperation, the dedicated mem-

ory subsystem is needed to alleviate the transmission

overhead between the host and the graph accelerator.

As a result, the data organization of graphs is the key

to reduce the communication overhead. In order to

avoid conflicts of computing devices, runtime schedul-

ing schemes are also important for efficient task schedul-

ing.

The authors of [80] proposed to accelerate graph

processing under a heterogeneous architecture with

CPU and FPGA. Hybrid vertex- and edge-centric mod-

els are adopted in [80] as discussed in Subsection 4.1 to

fully utilize the processing power of CPUs and FPGAs.

Generally, CPU is better for fast sequential processing

while FPGA can be used to explore massive parallelism.

Hybrid model can flexibly assign workloads to these two

devices according to the parallelism of vertices in each

iteration. In order to support this scheme, an opti-

mized graph data structure is designed. As for mem-

ory coherency, dedicated on-chip memory buffers are

designed on FPGA and the accesses to the host mem-

ory are controlled by a master thread on CPU. Despite

that the heterogeneous solution can extend the power

of accelerators, the overhead to maintain the memory

coherency might limit the performance. There is still a

lot of research space for heterogeneous solutions.

4.4 Sophisticated Co-Designs

Graph processing accelerators often require a series

of optimizations for fully exploiting their hardware po-

tentials. There also emerge a few co-optimization tech-

niques at these aspects for high parallelism, lower mem-

ory access overhead, and better energy efficiency.

4.4.1 Parallelism Extension

The processing units in either ASIC- or FPGA-

based graph processing accelerators are often organized

in the form of pipelines. The instructions of graph al-

gorithms are pipelined to offer high parallelism. PIM-

based graph accelerators integrate the processing units

inside the memory. Their efficiency can be scaled by

simply enlarging the memory capacity. For better scala-

bility, three optimization solutions below can be consi-

dered useful potentially.

Pipeline Duplication. An intuitive method to in-

crease the throughput is to duplicate multiple pipelines

for the parallel processing on more vertices and edges.

This simple method has been widely used in a wide

spectrum of previous work[16,27,29,30,85,92,107]. Nev-

ertheless, there still remain some potential problems

that might prevent the scalable efficiency of multi-

pipeline from expectation, which is significantly under-

studied. For instance, considerable communication be-

tween pipelines may lead to the additional overhead via

crossbars and controllers[16,29]. In addition, there also

exists a workload balance issue that needs specialized

data partitioning[16,28].

Split Kernel. Alternative is to split a big, whole

processing stream into many small kernels that can be

then considered being executed in parallel. This is of-

ten done by decoupling the modules of data access and

computation, and then making them executed in para-

llel. In this way, the data access module is responsible

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 353

for accessing graph data. The computation module uses

the data to conduct user-defined computations. For ex-

ample, by using GAS model, [25, 29, 30] create specia-

lized execution circuits. Each module is thus enabled

to process a large number of vertices and edges concur-

rently. The SpMV-based accelerator[107] also decouples

the matrix access from the computation. This method

explores the task-level parallelism but extra scheduling

mechanisms are needed to ensure the correctness.

Using Dataflow Paradigm. Vertex dependencies

of graph can stall the pipelines and decrease the

instruction-level parallelism. How to reduce the impact

arising from data dependencies remains an open prob-

lem for increasing the number of Instructions per Cy-

cle (IPC). One viable solution for solving this problem

is to leverage the dataflow paradigm[72,91,108], which

forms a directed graph of the operations according

to the data dependency between two adjacent ope-

rations. The output dependency and the control de-

pendency in graph processing can be then significantly

eliminated[91]. GraphOps[72] uses dataflow model to

form the data path of different processing blocks. Their

overhead of controlling feedback can be therefore alle-

viated.

4.4.2 Memory Access Optimization

For graph processing, memory accesses often dom-

inate overall execution time. Designing an effi-

cient memory subsystem is crucial for the graph pro-

cessing accelerator, particularly for memory access

efficiency[16,29].

1) Enhancing Memory-Level Parallelism (MLP).

MLP can be represented as the number of outstanding

memory requests supported at the same time. Higher

MLP can reduce the total memory access time for data-

intensive applications as graph processing. It usually

needs the memory devices to support enough concur-

rent memory requests. There are two ways to enhance

MLP.

• Multiple Banks. One method to increase MLP

is using multiple banks. DRAM is composed of

many independent banks. Utilizing the parallelism of

these banks can significantly improve the memory-level

parallelism[85−87]. The memory banks are connected to

the processing units directly through crossbars. They

can be accessed concurrently.

• Multiple I/O Ports. Another method is to design

multiple I/O ports for a memory block[27,88,92]. By in-

creasing the I/O ports, multiple memory requests can

run concurrently. Usually the number of ports can be

manually configured on the scrathpad memory when

designing an accelerator. High MLP can be attained

when the number of ports is equal to the number of pro-

cessing units[16]. BRAMs on FPGAs can also be man-

ually controlled to achieve this goal[27]. These BRAMs

are usually combined together to form a memory block

with multiple I/O ports.

2) Improving Bandwidth Utilization. The memory

bandwidth utilization here means the valid values ra-

tio per transfer. Random accesses in graph processing

usually cause the low ratio of valid values and result in

much wasted bandwidth. Improving the memory band-

width utilization can reduce the total number of mem-

ory accesses. There are mainly two effective methods

for improving the bandwidth utilization.

• Coalescing Method. Coalescing means com-

bining multiple transfers of small items into fewer

large ones. This method is widely adopted in graph

accelerators[27,71,88,92,93]. For example, if the memory

requests are adjacent in a vertex or edge list, these

requests can be coalesced as one request for a block.

Otherwise there may exist several random accesses that

lead to the wasting of bandwidth[88].

• Streaming Edges. Streaming edges means that the

edges are sequentially accessed from the memory to the

accelerator[27]. Random accesses of edges can be re-

duced. In a vertex-centric model, the edges of a vertex

can be streamed to the chip[16]. This method can fully

utilize the bandwidth in the edge-centric model. How-

ever, the edges may need to be reordered so as to run

in a more efficient fashion[27,28].

3) Reshaping Cache Hierarchy. Poor locality of

graph processing makes the current cache hierarchy lack

of efficiency. High cache miss rate will increase the

memory access latency, which would cause the under-

utilization of computing resources. Reshaping the cache

hierarchy means designing new cache architectures and

mechanisms for graph processing features.

• Scratchpad Memory. Scratchpad memory is used

as an addressable cache that can be explicitly con-

trolled. The scratchpad memory is closed to the

graph engines. It can provide high performance for

data access[73,109,110]. Graphicionado[16] uses scratch-

pad memory to store the temporary vertex property

array and edge offset to optimize the random data ac-

cesses. Similarly, [29] also designs different kinds of

caches for vertices, edges, and other graph information

according to their access behaviors.

• Locality-Aware Buffer. Locality-aware buffer is

a kind of specialized cache for graph data with rela-

354 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

tively good locality, e.g., the high degree vertices. High-

degree vertices in a power-law graph have higher proba-

bility to be accessed many times. These vertices can

be cached to improve performance[30]. FPGP[26] and

ForeGraph[28] improve the locality of vertices using

grid-like partitioning methods, and design special on-

chip buffers for vertex subsets, which can be thus ac-

cessed fast in reuse.

Execution-Aware Prefetching. This method

prefetches the graph data according to the execution

requirements. It avoids the inefficiency of fixed tra-

ditional cache prefetching mechanism. For exam-

ple, in the vertex-centric model, the source vertex

list and its corresponding edge list can be prefetched

sequentially[32]. The key is to exploit the access pat-

terns of different kinds of graph data during the exe-

cution, and further design appropriate prefeching mech-

anism to reduce the memory latency.

4.4.3 Energy Efficiency Optimization

The performance of graph accelerators can be mea-

sured as traversed edges per second (TEPS). Energy

efficiency can be further defined as TEPS per Watt

(TEPS/W). Existing graph processing accelerators can

provide significantly high performance by dedicated cir-

cuits with inherent low-energy consumption. However,

most of graph programs have a high memory-access-

to-computation ratio. For example, the energy results

show that PageRank consumes over 60% energy on

memory[111]. Optimizations on memory consumption

can further improve the energy efficiency. Nowadays,

there are two simple yet effective ways to improve the

memory energy consumption.

Leveraging Emerging Memory Technologies. A

number of emerging memory technologies inte-

grate the computing logic inside the memory, e.g.,

HMC[14,32,73,81] and ReRAM[70,82] as described previ-

ously. This architectural reformation can conduct the

in-situ computation alongside the data. It naturally

avoids the frequent data movement for energy saving.

At this point, we can easily replace traditional DRAM

by leveraging these emerging memory devices.

Power-Gating Schemes. Power-gating is a widely

used technology that powers off the idle logic circuits

to save the energy. This scheme is suitable for memo-

ries that can be manually controlled[27,82]. For exam-

ple, it can be applied to BRAMs on FPGAs, which are

the key for improving the overall FPGA energy con-

sumption in graph processing accelerators[27]. BRAM

is selectively activated and deactivated via the enabled

ports. A BRAM module is only activated when the re-

quired data is stored. When the edges of a vertex are

stored in the same BRAM module, BRAM only needs

to be activated once to traverse these edges[27]. Similar

strategies can be used for ReRAM[82] to save the energy

for edge access by controlling the activation of ReRAM

banks in a flexible way.

5 Runtime Scheduling

As discussed in Subsection 4.2, customized hard-

ware circuits for graph processing generally involve spe-

cialized designs. This often enforces to design the tai-

lored runtime scheduling to appropriately assign work-

loads and coordinate the processing units for provid-

ing the correct and efficient execution. Unlike existing

runtime schedulers on traditional processors, the run-

time scheduling for graph accelerators may be necessar-

ily needed to be implemented in the form of hardware

circuits. This process usually needs to be transparent

to users. Runtime scheduling usually involves three as-

pects of core components: the communication models,

the execution modes, and the scheduling schemes.

• Communication Model. Communications com-

monly exist in graph processing accelerators among pro-

cessing units. Communication models provide efficient

ways for these processing units to communicate and

cooperate with each other. Graph accelerators usu-

ally adopt two kinds of communication models: the

message-based pattern and the shared memory pattern.

These models present different features and can benefit

from the optimization of information flows.

• Execution Mode. The execution mode determines

the scheduling order of operations. There are two kinds

of execution modes that have been widely used for ex-

isting graph processing accelerators: synchronous exe-

cution and asynchronous execution.

• Scheduling Scheme. The scheduling scheme de-

fines the granularity and processing order of graph data.

Existing work adopts three kinds of scheduling schemes:

block-based scheduling, frontier-based scheduling, and

priority-based scheduling. Flexibly using these schedul-

ing schemes can help reduce the conflicts and improve

the utilization of hardware resources.

5.1 Runtime Considerations

For preserving the correctness and efficiency, run-

time scheduling for graph processing accelerator needs

to consider the following two major aspects.

• Data Conflicts. A specific vertex of a graph may

be often associated with a large number of edges, par-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 355

ticularly true for skewed graphs. There is the com-

mon case that some vertices may be updated in con-

flict by many other vertices simultaneously. For pre-

serving the correctness of vertex updating, the special-

ized mechanisms are presented to enforce the atomic-

ity. For example, for a read-modify-write update of

a destination vertex, [16, 27] propose to use the Con-

tent Addressable Memory (CAM) like hardware struc-

ture to support finer-granularity memory access, but

extra pipeline stalls occur. Similar conflicts can also

exist between multiple pipelines. An effective runtime

scheduling is expected to avoid these conflicts of vertex

updating for high throughput.

• Workload Balance. Natural graphs in the real

world often manifest the power-law distribution[112].

This can result in a severe load imbalance issue in the

sense that a few vertices have extremely high degrees.

Workload imbalance may lead to the fact that the loads

of some computational logic are overly assigned while

other light processing units are stalled. More serious

is that the loads of the graph computation are often

difficult to predict due to the complex data dependen-

cies. An effective runtime scheduling scheme for graph

processing accelerators should be also expected to dy-

namically balance hardware resources with even loads

for every processing unit as many as possible[29].

5.2 Communication Model

The communication model is a well-known pattern

that exists commonly to propagate the information be-

tween different processing units. We next survey sev-

eral patterns that have been used in off-the-shelf graph

accelerators.

Message-Based Pattern. Message-based communi-

cation model is widely used in distributed environ-

ments. In message-based communication model, com-

munication is realized by sending messages among diffe-

rent processing units. These massages can carry the

updated data or computation commands that will be

executed locally. This model is widely used in HMC-

assisted graph processing accelerators[32,81]. As men-

tioned previously, the vaults in HMCs communicate

with one another via messages.

Tesseract[32] designs the remote function call mecha-

nism via message passing to indicate the running of des-

tination processing cores. The message passing can be

used to avoid the cache coherence issues of the process-

ing cores. It can also reduce the atomic operations for

shared data. However, a large number of messages come

with a high cost of communication time and bandwidth.

Partitioning methods and coalescing methods are usu-

ally needed to reduce the number of messages[81]. Be-

sides, extra memory copying operations and buffers are

also needed.

Shared Memory Based Pattern. The shared memory

model is suited for the communication between process-

ing units on a single accelerator. The same location of a

memory can be accessed and updated by multiple pro-

cessing units simultaneously. When multiple accelera-

tors are adopted, it is also possible to have a distributed

shared memory.

FPGP[26] adopts this model based on FPGAs. It

maintains a global shared vertex memory for mul-

tiple FPGA boards and each board keeps a vertex

cache for multiple processing units. Synchronization

between iterations is needed to maintain memory con-

sistency. Constrained by limited bandwidth, the global

shared vertex memory can limit the scalability of FP-

GAs. ForeGraph[28] uses a distributed shared memory.

Shared memory model can usually avoid the redundant

copies of graph data and extra storage space in message

passing model. It is also easy to implement and design.

However, there may exist many data races on the same

memory location if some vertices are updated by many

neighboring vertices.

5.3 Execution Model

The execution model typically has two major con-

cerns: 1) scheduling timing, and 2) scheduling order.

The scheduling timing indicates when to execute the

vertex programs, which can be often synchronous or

asynchronous. The scheduling order indicates the in-

formation flow for a vertex program to decide how to

update the vertex. They are often used to co-determine

when and how a vertex can execute an update if it is

active.

Synchronous Mode. In the synchronous execution

mode, all the vertices in a graph are processed in cer-

tain order during each iteration. Between two consec-

utive iterations, there is a global barrier to ensure that

all the newly updated vertices in current iteration are

visible at the same time in the next iteration for all

processors[113]. In graph accelerators, the graph is usu-

ally partitioned into subgraphs that are processed by

different processing units. When a processing unit fin-

ishes its work, it has to wait for other processing units

finished. Then the values of different subgraphs are

synchronized[25]. During each iteration, only the local

values of graph data can be accessed and updated[26].

356 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

The synchronous execution is easy to realize on

graph accelerators and suits for memory-bound graph

algorithms. It can utilize the memory bandwidth better

because the data is updated in a bulk synchronous way.

Many memory accesses can be combined and sequen-

tial. However, as discussed before, the synchronous

mode may require more storage space for local data

in each iteration when workloads are unbalanced.

Asynchronous Mode. In the asynchronous execution

mode, each processing unit can start the next itera-

tion immediately when it finishes current workloads.

There is no global barrier to synchronize these pro-

cessing units. The asynchronous mode can be used

to balance the loads because the processing units are

kept busy nearly all the time. This mode suits for the

algorithms that converge faster than synchronous exe-

cution. Some graph algorithms can only converge under

asynchronous execution, e.g., the graph coloring algo-

rithm. It also supports dynamic scheduling, e.g., the

priority-based scheduling mechanism[29] to achieve high

performance. However, the disappointing point is that

the asynchronous mode requires tremendous efforts to

implement on graph accelerators for the sophisticated

hardware design[114].

Information Flow Direction. For executing a ver-

tex program, it is important to decide how to update

the value of vertices. The information flow between

vertices typically has two kinds of directions: the push-

based mode and the pull-based mode. For an active

vertex, the information is propagated from the active

vertex to its neighbors in the push mode, while in the

pull mode the information is flowed from its neighbors

to the active vertex. For the BFS algorithm, in the

push mode, the values of out-degree neighbors are up-

dated according to active vertices. In the pull mode,

the active vertex gets information from its in-degree

neighbors to update itself.

Usually, the push mode can explicitly select the up-

date vertices but it may cause redundant random ac-

cesses when seeking the next frontier. Locks might be

needed to ensure the consistency since a vertex may

be updated by multiple active vertices. The pull mode

presents better locality for updated vertices and has

natural consistency because the vertices just update

themselves. However, it may result in additional over-

head for checking whether the updating of neighboring

vertices is necessarily executed.

Push and pull modes can be also combined to-

gether and switched at runtime to alleviate the syn-

chronization and communication overhead[115]. Ligra[3]

first adopts this method into shared memory graph

processing systems, and Gemini[45] is the first to ap-

ply this hybrid mode to a distributed memory setting

which achieves extremely high performance. This hy-

brid method has also been used in some graph acceler-

ators for performance improvement[74,87]. The switch-

ing time is based on the number of active vertices in

the frontier and associated unexplored edges. We can

switch to the pull mode if the frontier has a high ratio

of the unexplored edges for better performance[74].

5.4 Scheduling Schemes

There are many runtime scheduling schemes that

can be adopted in graph processing accelerators.

• Block-Based Scheduling. In block-based schedul-

ing, the whole graphs are evenly partitioned into blocks

and are distributed to multiple processors. There is no

strict order for these partitions to be processed. This

scheduling method is widely used for graph processing

integrated with multiple accelerators.

For example, Tesseract[32] distributes the graphs

to multiple vaults on HMCs to process in parallel.

ForeGraph[28] partitions the graph into a grid and dis-

tributes the grid blocks to different FPGA boards.

These executions of subgraphs are usually synchronized

after each iteration. The batch-based scheduling can

easily help achieve massive parallelism among multiple

accelerators in a synchronous fashion. However, the

workloads of each batch should be balanced to achieve

better resources utilization.

• Frontier-Based Scheduling. This kind of schedul-

ing is suitable for those graph algorithms in which only

a subset of data needs to be processed in each iteration.

A frontier is needed to contain the active data that is to

be scheduled. For example, in the vertex-centric model,

the frontier contains the active vertices that need to be

executed for each iteration. The scheduler gets a vertex

from the frontier and checks the state array to decide

the data path of the vertex[30,86,114]. The frontier-based

scheduling can help process most of graph algorithms.

However, the frontier might be modified frequently by

multiple vertices which contend for updating the same

vertex with serious race conditions. The specialized

hardware circuit design may be a viable solution for

efficiently supporting multiple simultaneous updates.

• Priority-Based Scheduling. In the priority-based

scheduling, the scheduled items are assigned a priority

flag which represents the execution order. This kind of

scheduling is usually combined with the frontier-based

approach where the active vertices are ranked. It can

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 357

also be used to schedule the order of messages to be

processed[32]. Prioritiy-based scheduling can help some

graph algorithms converge faster in a asynchronous exe-

cution model, e.g., the PageRank algorithm[29].

For example, a specialized synchronization unit is

designed in [29] to rank and schedule active vertices.

These active vertices are maintained in an active list,

and they are then executed according to the ranking

value. However, the newly created dependencies based

on the priorities may bring extra synchronization over-

head. Fortunately, the latency can usually be compen-

sated by the gains because of the fast convergence.

Remarks. A single graph processing accelerator may

have limited hardware resources and memory capac-

ity. For mobilizing the potentials of these resources,

in addition to the effective resource layout, an efficient

runtime scheduling scheme is the key, which decides

when and where a specified data is supposed to be pro-

cessed. Considering the complexity of the hardware cir-

cuit layouts, unlike the pure software implementations,

the runtime scheduling on a graph accelerator has to

be co-designed with the necessary hardware supports

in many cases for better efficiency.

For instance, software-assisted runtime scheduling

for ensuring the sequential consistency can use lock-

ing mechanisms that are easy to implement. How-

ever, these mechanisms can be also error-prone and

even suffer from significant performance degradation in

hardware implementation. The specialized hardware

supports with CAM structure[109] or more advanced

designs[15] make the scheduling for sequential consis-

tency easy. Runtime scheduler can therefore focus more

on the parallelism exploitation[114]. In addition, this

also greatly mitigates the atomicity overhead. Com-

bined with irregular accesses and large sizes of graphs,

more extra efforts still have to be done for runtime

scheduling.

6 Graph Accelerator Evaluation

The key issues of the design and implementation of

graph accelerators have been summarized in Section 3,

Section 4, and Section 5. These designs differ in prepro-

cessing methods, programming models, and hardware

architectures. Here we summarize the key metrics in

existing work and make a detailed discussion from fol-

lowing aspects.

• Evaluation Metrics. Evaluation metrics presented

in this paper include the typical design techniques,

hardware platform parameters, performance metrics,

and energy efficiency metrics. These metrics provide

an overall view of different graph accelerators.

• Summary of Results. Based on the evaluation

metrics, we analyze these results and make a discussion

from five aspects: graph benchmarks, platform parame-

ters, preprocessing, graph processing frameworks, and

programming models. Various kinds of graph bench-

marks and platforms make a fair comparison of different

accelerators difficult. Different kinds of design methods

can also influence the performance. We argue that it

demands standard graph accelerator benchmarks for ef-

ficient evaluations.

• Case Study. In the review, we find that there

is no absolute winner among existing graph process-

ing accelerators in terms of performance and energy

efficiency. In this section, we choose another angle to

study the design and implementation of a state-of-the-

art accelerator[15] in more depth so that readers can

have a more in-depth understanding on the three core

components.

6.1 Evaluation Metrics

In order to assess the graph accelerators, existing

work typically uses TEPS as the performance metric,

TEPS/W or power consumption (watt, or joule per

read/write) as energy efficiency metric. These metrics

basically give an overall evaluation of the graph accel-

eration system.

Key parameters of existing graph accelerators for

evaluation are divided into three aspects. Table 4 gives

an overview of a graph processing accelerator includ-

ing the pre-processing, programming models, and com-

pared systems. Note that each study is assigned with

a unique ID which is also used for the same acceler-

ator. Table 5 summarizes the hardware parameters of

graph accelerators. Table 6 summarizes the comparison

of performance and energy efficiency reported in the re-

lated work.

For fidelity, the labels “M” and “S” are used to

distinguish the measurement-based results and the

simulation-based results respectively in Table 5. We

try to provide the actual performance/energy metrics,

but some related work has only the relative perfor-

mance/energy over the compared systems. We thus

cannot infer the actual accelerator performance accord-

ing to their original results. In this case, the perfor-

mance/energy is labeled as “SP” (speedup) in Table 6.

Some accelerators support only a single graph algo-

rithm or a few graph algorithms. The corresponding

performance will be labeled as “-”. In addition, we use

358 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

Table 4. Overview of Graph Processing Accelerators

Year System Architecture Data Preprocessing Programming Generality Scheduling Compared System ID

Layout Model

2016 Graphicionado[16] ASIC COO Y V/Sync Various F GraphMat[51] 1

2016 EEA[29] ASIC CSR Y V/Async Various P Host 2

2017 TuNao[30] ASIC COO Y V/Async Various F Cusha[7] 3

2017 GAA[83] ASIC CSR Y V/Async Various P Host 4

2018 Ayupov et al.[31] ASIC CSR Y V/Async Various P GAP[116] 5

2015 Tesseract[32] PIM - Y V/Sync Various B Host 6

2017 GraphPIM[14] PIM CSR N V/Sync Various F GraphBIG[17] 7

2017 RPBFS[69] PIM CSR Y -/Sync BFS B Enterprise[11] 8

2018 GraphR[70] PIM COO Y E/Sync Various B GridGraph[55] 9

2018 RPBFS[77] PIM CSR Y -/Sync BFS B Enterprise[11] 10

2018 GraphP[81] PIM - Y V/Sync Various B Tesseract[32] 11

2018 GraphH[73] PIM COO Y E/Sync Various B Tesseract[32] 12

2010 Wang et al.[78] FPGA+SoC CSR Y V/Sync BFS F Cell BE[117] 13

2011 Betkaoui et al.[85] FPGA CSR N V/Sync GC B GraphCrunch[118] 14

2012 Betkaoui et al.[86] FPGA CSR N V/Sync BFS B PACT11[119] 15

2012 Betkaoui et al.[87] FPGA CSR N V/Sync APSP B HPCC11[120] 16

2014 GraphGen[88] FPGA COO Y V/Sync Various F Host 17

2014 CyGraph[25] FPGA CUST Y V/Sync BFS F ASAP12[86] 18

2015 Attia et al.[89] FPGA CUST Y V/Sync APSP F BGL[121] 19

2015 Umuroglu et al.[79] FPGA+SoC CSC Y -/Sync BFS F Host 20

2015 Zhou et al.[92] FPGA COO Y E/Sync SSSP B CyGraph[25] 21

2015 Zhou et al.[93] FPGA COO Y E/Sync PageRank B Host 22

2015 GraphSoC[84] FPGA+SoC - Y V/Sync Various B Host 23

2016 FPGP[26] FPGA COO Y V/Sync BFS B GraphChi[4] 24

2016 GraVF[90] FPGA - Y V/Sync Various B - 25

2016 GraphOps[72] FPGA CUST Y V/Sync Various F X-Stream[5] 26

2016 Zhou et al.[27] FPGA COO Y E/Sync Various B X-Stream[5] 27

2016 SpMV[107] FPGA - N -/Sync SpMV B Host 28

2017 ForeGraph[28] FPGA COO Y E/Sync Various B FPGP[26] 29

2017 Ma et al.[122] FPGA - N -/Async Various B Host 30

2017 Zhang et al.[71] FPGA CSR Y V/Sync BFS F FPGP[26] 31

2017 Zhou and Prasanna[80] FPGA+CPU CUST Y Hybrid/Sync Various F GraphMat[51] 32

2018 Zhang and Li[74] FPGA CSR Y V/Sync BFS F FPGA17[71] 33

2018 Khoram et al.[76] FPGA+HMC CSR Y V/Sync BFS F FPGA17[71] 34

2018 FASTCF[75] FPGA COO Y E/Sync CF B SIGMOD14[18] 35

2018 Yao et al.[15] FPGA CSR/CSC Y V/Sync Various F ForeGraph[28] 36

2018 GraFBoost[94] FPGA+Flash CSR Y E/Sync Various B FlashGraph[123] 37

abbreviations for some long terminologies because of

the limited space. In programming model category, we

use “V” and “E” to represent the vertex-centric model

and the edge-centric model, respectively. When the

model is not clearly named, we use “-” instead. Simi-

larly, we use “Sync” and “Async” to represent the syn-

chronous execution and the asynchronous execution, re-

spectively. Block-, frontier- and priority-based schedul-

ing methods are represented by “B”, “F”, and “P”, re-

spectively.

6.2 Summary of Results

We analyze the summary in the following aspects,

including graph benchmark, platform parameter, pre-

processing, graph processing framework, programming

models, and runtime scheduling.

1) Graph Benchmark. When comparing the accel-

erators, the benchmark is of vital importance to un-

derstand the effectiveness of the design and the imple-

mentation of a graph processing accelerator. A graph

benchmark consists of at least four aspects including

graph layouts, types of input graphs, the size of the

graphs, and graph algorithms. As shown in Table 4,

graph layouts are different across the existing studies

on graph processing accelerators. Thus, in fact it re-

quires further research for developing a fair and practi-

cal benchmark for evaluating different graph processing

accelerators. Particularly, we have the following obser-

vations for further research.

First, existing studies use different storage layouts.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 359

Table 5. Parameters of Graph Accelerator Platforms

ID Compute Device Frequency On-Chip Memory Off-Chip Memory Bandwidth Method

1 Streams× 8 1 GHz eDRAM 64 MB DDR4× 4 68 GB/s S

2 AU× 4 1 GHz Cache 34.8 KB DDR4 12.8 GB/s S

3 ECGRA 300 MHz Cache 2.4 MB - 288 GB/s M

4 AU× 4 1 GHz - DDR4 12.8 GB/s S

5 AU× 4 1 GHz - DDR4 12.8 GB/s S

6 HMC (512 cores) 2 GHz Cache 16 MB HMC1.0× 16 8 TB/s S

7 CPU (16 cores) 2 GHz Cache 16 MB HMC2.0 480 GB/s S

8 ReRAM (1 024× 1 024) 1.2 GHz eDRAM 4 MB ReRAM 50 GB/s S

9 ReRAM (32× 64) - ReRAM Disk - S

10 ReRAM (1 024× 1 024) 1.2 GHz eDRAM 4 MB ReRAM 50 GB/s S

11 HMC (512 cores) 1 GHz Cache 49 MB HMC2.1× 16 5 TB/s S

12 HMC (512 cores) 1 GHz SRAM 576 MB HMC2.1× 16 5 TB/s S

13 Virtex-5 FPGA 100 MHz BRAM 1.29 MB DDR3 0.1 GB/s S

14 Virtex-5 FPGA× 4 75 MHz BRAM 5.18 MB - 80 GB/s M

15 Virtex-5 FPGA× 4 75 MHz BRAM 5.18 MB - 80 GB/s M

16 Virtex-5 FPGA× 4 75 MHz BRAM 5.18 MB - 80 GB/s M

17 Virtex-6 FPGA 100 MHz BRAM 1.87 MB DDR2 6.4 GB/s M

18 Virtex-5 FPGA× 4 75 MHz BRAM 5.18 MB - 80 GB/s M

19 Virtex-5 FPGA× 4 75 MHz BRAM 5.18 MB - 80 GB/s M

20 FPGA/ARM 150/666 MHz BRAM 0.56 MB DDR3 3.2 GB/s M

21 Virtex-7 FPGA 200 MHz BRAM 4.5 MB DDR3 20 GB/s M

22 Virtex-7 FPGA 200 MHz BRAM 8.375 MB DDR3 20 GB/s S

23 ZC706 FPGA/SoC 250 MHz BRAM 70 KB DDR3 - M

24 Virtex-7 FPGA 100 MHz BRAM 4.76 MB DDR3 12.8 GB/s M

25 Virtex-7 FPGA 150 MHz BRAM 6.6 MB DDR3 - M

26 Virtex-6 FPGA 150 MHz BRAM 4.76 MB DDR3 38.4 GB/s M

27 Virtex UltraScale FPGA 250 MHz BRAM 12.8 MB DDR4 19.2 GB/s S

28 FPGA× 4 - - DDR3× 8 102.4 GB/S M

29 Virtex UltraScale FPGA 200 MHz BRAM 16.61 MB DDR4 19.2 GB/s S

30 Virtex UltraScale 440 FPGA× 2 200 MHz BRAM 22 MB DDR3 51.2 GB/s S

31 AC-510 FPGA 125 MHz BRAM 4.75 MB HMC2.0 60 GB/s M/S

32 Arria10 FPGA/ Xeon-cores× 14 - BRAM 6.6 MB DDR3 12.8 GB/s M

33 AC-510 FPGA 125 MHz BRAM 4.75 MB HMC2.0 60 GB/s M/S

34 AC-510 FPGA 125 MHz BRAM 4.75 MB HMC2.0 60 GB/s M

35 Virtex UltraScale+FPGA 150 MHz RAM 43.3 MB DDR4× 2 38.4 GB/s M

36 Virtex Ultrascale+FPGA 250 MHz BRAM 9.49 MB DDR4 19.2 GB/s S

37 VC707 FPGA/Flash 125 MHz BRAM 4 MB DDR3 10 GB/s M

Some of them adopt the edge list, some of them use

CSR/CSC, and some of them utilize the customized lay-

out (CUST). They affect the memory access patterns

dramatically and the performance accordingly.

Second, according to Table 6, the types of the

graphs used in the accelerators are not totally the

same. Types of graphs used in prior work include

real-world graphs, e.g., social network graph, road net-

work graph, and functional magnetic resonance imag-

ing (fMRI) graphs. There are also synthetic graphs,

i.e., the recursive matrix (RMAT) graph, the Kronecker

graph, the graphs generated by the Linked Data Bench-

mark Council (LDBC), and the graphs generated by

the Library of Efficient Data Types and Algorithms

(LEDA). Different combinations lead to diverse results.

Third, graph algorithms used in different graph ac-

celerator designs are also usually different. If the al-

gorithms used are different, comparing the metrics of

performance and energy efficiency needs to be improv-

able and justified.

Fourth, graph size is another key graph parame-

ter, but it is not sufficiently considered in previous

360 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

Table 6. Comparison of Performance and Energy Efficiency

ID BFS SSSP PageRank SpMV Energy |V |max |E|max Dataset

(GTEPS) (GTEPS) (GTEPS) (GTEPS) Efficiency (Million) (Million) Type

1 0.125–2.6 0.25–2.3 4.5–4.75 - 7 W 61.570 0 1 468.360 Social/RMAT

2 - SP SP - 3.375 W 67.000 0 1 000.000 Social/Kronecker

3 SP SP SP SP 9.6 W 7.400 0 192.000 Social

4 - SP SP - SP 67.000 0 1 000.000 Social/Kronecker

5 - SP SP - SP 16.800 0 268.000 Social/Kronecker

6 - SP SP - 94 mW/mm2 7.400 0 194.000 Social

7 SP SP SP - - 1.000 0 28.800 LDBC

8 0.2–1.2 - - - - 2.390 0 7.600 Social

9 SP SP SP SP 1.08 pJ(r), 3.91 nJ(w) 4.800 0 106.000 Social

10 0.2–1.2 - - - 1.59 pJ(r), 5.53 nJ(w) 1.960 0 5.530 Social

11 SP SP SP - SP 4.800 0 6.900 Social

12 SP - 320–350 - 133 mW/mm2 41.700 0 6 640.000 Social

13 0.16–0.79 - - - - 0.064 0 1.024 Synthetic

14 - - - - - 0.300 0 3.000 LEDA

15 0.25–2.6 - - - - 16.000 0 1 024.000 RMAT

16 - - - - - 0.038 0 - fMRI

17 - - - - - 0.110 0 0.340 Image

18 1.68–2.2 - - - - 8.000 0 512.000 RMAT

19 - - - - - 0.065 0 4.190 RMAT

20 0.09–0.255 - - - - 2.000 0 67.000 RMAT

21 - 1.6 - - - 1.000 0 - RMAT

22 - - 0.27–0.38 - - 2.390 0 7.600 Social

23 - - - 0.015 - 0.017 0 0.126 SpMV

24 0.01–0.012 - - - - 1 400.000 0 6 600.000 Social

25 3.5 - 3 - - 0.002 5 0.010 Synthetic

26 - - 0.035–0.115 0.2–0.75 - 2.390 0 30.600 Social

27 - 0.657–0.872 - - 19.06–24.22 W 4.700 0 65.800 Social

28 - - - 0.316 2 MTEPS/W - - -

29 0.897–1.458 - 0.997–1.856 - - 1 410.000 0 6 640.000 Social

30 SP SP - - 5–8 W 24.000 0 64.000 Synthetic

31 0.13–0.166 - - - - 33.500 0 536.800 RMAT

32 0.33–0.67 0.063–0.075 - - - 10.000 0 160.000 RMAT

33 0.4–152.6 - - - 43.6 W 23.900 0 577.100 Social/RMAT

34 0.1–0.65 - - - - 16.000 0 252.800 Social

35 - - - - 13.8 W 1.300 0 460.000 Bipartite

36 1.5–3.5 - 1.25–2.5 - - 3.070 0 117.000 Social

37 0.057–0.075 - SP - 50 W 3000.000 0 128 000.000 Social/Kronecker

work. The graph size used in different graph accel-

erators varies in a large range as the maximum number

of vertices |V |max and edges |E|max presented in Ta-

ble 6. Some graphs have less than a million vertices

while some of them have more than a billion. Given

even the same type of graph algorithms, the graphs

can involve different sizes, especially the RMAT graphs.

The number of vertices or edges may vary according to

the configuration of the graph generator. As a result,

different average degrees of graphs can result in distinct

parallelism and data locality of vertices. Therefore, this

may lead to different performance in the end.

2) Platform Parameter. We find that, even with the

same hardware component design, existing graph pro-

cessing accelerators have different parameter settings.

According to Table 5, it is clear that the platforms,

i.e., ASIC, PIM and FPGA used in different accelera-

tor designs, make a big difference on the resulting per-

formance and energy efficiency. This is expected since

the implementation frequency may have already been

different in an order of magnitude.

However, the parameters of the same kind of plat-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 361

form also vary dramatically. For instance, the largest

FPGA on-chip memory is around 44 MB while the

smallest one is only 0.25 MB. Similarly, the memory

bandwidths of the same type of platforms also differ

significantly. Large memory bandwidth allows more

parallel processing. Large on-chip memory improves

the memory access efficiency. The platform parameters

can have considerable influence on performance and en-

ergy efficiency.

3) Preprocessing. As discussed in Section 3, prepro-

cessing is usually beneficial to graph processing as it

improves the data locality or memory access patterns.

While we notice that some graph processing acceler-

ators do not involve preprocessing at all, it is unfair

to make an end-to-end comparison to the ones with

preprocessing. In addition, the accelerators with pre-

processing can also have diverse preprocessing efforts.

When the preprocessing efforts are different, it is also

tricky to compare the accelerators. In some of the oc-

casions, when the preprocessing cost can be fully amor-

tized, we may just ignore the preprocessing overhead.

It may not be the case when the application is sensitive

to preprocessing cost as suggested in [13].

4) Graph Processing Framework. According to the

“generality” column in Table 4, most of the graph pro-

cessing accelerators target a set of typical graph pro-

cessing algorithms, while the other accelerators may fo-

cus on optimizing a specific graph processing algorithm.

It is essentially a trade-off between generality and per-

formance. It is not fair to compare these accelerators

when “generality” is different.

5) Programming Model. From the tables, it can be

found that different programming models are used in

the graph processing accelerators. The accelerators can

be implemented in either the synchronous model or the

asynchronous model. Also, some accelerators follow a

vertex-centric processing model while others choose the

edge-centric model. Note that there is also one graph

accelerator based on the hybrid model. Different mod-

els may also influence the performance of graph accel-

erators. Nevertheless, there is no clear difference in

terms of the ease of programming. Different from the

above parameters, accelerators with different program-

ming models remain comparable.

6) Development Trend. For further exploration of

the results, Fig.4 makes a qualitative analysis of the rel-

ative development trend. These two charts only present

the relative position of the results for a quick evalua-

tion. More explicit details can refer to Table 6.

Fig.4(a) depicts the relative energy efficiency (rep-

resented in power consumption) of investigated graph

processing accelerators as the graph size increases.

Fig.4(b) illustrates the relative performance of the in-

vestigated graph processing accelerators for BFS, SSSP

and PageRank with different graph sizes. The graph

size is measured by the largest number of edges in re-

spective literature because the number of edges is usu-

ally much larger than the number of vertices in the

datasets. Edge numbers are depicted in the format

of offset reciprocal. The power consumption and per-

formance are depicted in a logit format for qualitative

comparison. The ID number of each graph processing

33

10

27
35

11

3

37

30

9

6

2
1

12

P
o
w

e
r

C
o
n
su

m
p
ti
o
n
 (

W
a
tt

)

25

20

32
34

18

31

33

15

24
37

21

32

25

26

13

10
8

36

1

29

27

1
22

36

1

29

Number of Edges (|E|) Number of Edges (|E|)

P
e
rf

o
rm

a
n
c
e
 (

G
T

E
P
S
)

BFS-M
SSSP-M
CF-M
AVG-M

BFS-S
SSSP-S
CF-S
AVG-S

BFS-M
SSSP-M
PageRank-M

BFS-S
SSSP-S
PageRank-S

(b)(a)

Fig. 4. Relative development trend of (energy efficiency and/or performance) results for existing state-of-the-art graph processing
accelerators (explicit results can refer to Table 6 for details). “-M” represents the measurement-based results and“-S” represents the
simulation-based results. (a) Relationship of energy efficiency and graph size. (b) Relationship of performance and graph size.

362 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

accelerator is labeled besides corresponding accelera-

tor’s data point in Fig.4. Note that all the data is based

on the explicit descriptions in relevant literatures, and

the measurement-based results are distinguished from

simulation-based results for the fidelity.

Power consumption is an important metric to mea-

sure the energy efficiency[29]. The power consumption

in Fig.4(a) presents an increasing trend as the graph

size increases. This is because it generally demands

more computing and storage resources to handle large

graphs. Besides, different kinds of hardware designs

can contribute to various energy behaviours. The ac-

celerator with the lowest power consumption adopts

the emerging ReRAM which has intuitive high en-

ergy efficiency[70]. In order to process larger graphs,

the hosts may be involved and result in higher power

consumption[94]. In Fig.4(a), accelerators with IDs by

1[16] and 2[29] can handle large graphs with good en-

ergy efficiency, which are both ASIC-based accelera-

tors. This is because of the dedicated circuit designs

and memory subsystems.

As for performance analysis, in spite that the re-

sults vary in different accelerators, the results show that

the performance acts in a descend trend with graph

size increasing. This is obvious for the BFS algorithm.

Note that for the SSSP and PageRank algorithms, there

is a lack of explicit evaluation results in existing lit-

eratures and only limited data points are depicted in

Fig.4(b). Most of the results with high performance

are based on a small graph size that the graph can

fit into the on-chip/board memories. However, with

graph size increasing, performance based on single ac-

celerator decreases because external storages are often

required[26,94]. Some designs based on multiple acceler-

ators can maintain high performance when dealing with

large graphs[28,86] because the graphs can still be held

in on-chip/board memory.

Remarks. It gets clear that comparing different

graph accelerators is extremely challenging due to the

distinct evaluation parameters. To resolve this prob-

lem, the common practice in prior work is to compare

the accelerator with some known systems as shown

in Table 4. However, the compared systems used in

different accelerators are still not comparable. For ex-

ample, different accelerators adopt various strategies

in preprocessing, parallel graph computation models,

and runtime scheduling schemes. As a result, the ac-

celerator evaluation and the peer comparison are still

trapped into a deadlock. We conjecture that the lack

of graph accelerator benchmarks and reference designs

is the root of this problem. To this point, developing

an open-sourced benchmark as well as an easy-to-port

reference design can be a potential solution to make a

fair evaluation.

6.3 Case Study: AccuGraph[15]

As a representative state-of-the-art FPGA-based

graph processing accelerator, AccuGraph[15] has

achieved impressive performance results with the ded-

icated hardware design for parallelizing the vertex up-

dates that involve conflicts. For better understanding

this survey, Fig.5 re-decomposes the original workflow

of AccuGraph as a case study according to different

stages that we have identified previously.

Preprocessing. For saving the space of on-chip mem-

ories, AccuGraph follows to use the compact graph rep-

resentation with CSR. In an effort to balance the num-

ber of vertex accesses, AccuGraph presents an index-

aware ordering to reorder the edges of each vertex by

following a simple hash function of MOD(n) where n is

up to the number of on-chip subgraph partitions. As

for graph partition, considering that AccuGraph uses a

pull-based model for high-throughput pipeline design,

a vertex-cut graph partitioning method is used to en-

sure the sequential access of the in-degree edges of each

vertex.

Parallel Graph Computation. AccuGraph is built

upon a Xilinx Virtex Ultrascale+FPGA board. In or-

der to avoid the half-bandwidth wasting problem of

edge-centric programming model that simultaneously

accesses both source and destination vertices, Accu-

Graph uses the vertex-centric programming model to

access source vertices only for ensuring the sequential

access of edges.

The core design of AccuGraph lies in a parallel ac-

cumulator with dedicated hardware circuits that can

support the simultaneous update of conflicting vertices.

The key insight is that the atomic operations of many

graph algorithms manifest incremental and simplex fea-

tures, which enables to execute massive conflicting ver-

tex updates in an accumulative fashion. By handling

atomic operations simultaneously and merging their re-

sults in parallel, the update operations for the same ver-

tex can be therefore parallelized while preserving the

correctness of final results.

It is also observed that a significant amount of lo-

cality exists for accessing associated edges of a particu-

lar active vertex. In order to further reduce the syn-

chronization overhead of high-degree vertices, Accu-

Graph follows to use Copy-on-Write philosophy[124] to

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 363

0

1

4

7

11

2

6

12

9

0

4

2

12

6

1

7

11

9

0

12

6

11

9

0

4

2

1

7

Runtime Scheduling

Parallel Accumulation Efficient Synchronization

Parallel Graph Computation

Partitioned by the Vertex ID

Address Generator

1
L

R
9

L

R
...

Vertex Pipeline 1

..
.

8
L

R
16

L

R
...

Vertex Pipeline 8

Memory

ϵ ?

ϵ?M
e
m

o
ry

In
te

rf
a
c
e

S
h
u
ff
le

Request

FIFO 1

Request

FIFO 2

Request

FIFO N

Token

FIFO

On -Chip

Memory

R
e
o
rd

e
r

..
.

T
o

C
o
m

p
u
ta

ti
o
n

C
ro

ss
b
a
r

S
w

it
ch

Compa-
rator

ID
Reg.

Accum-
ulaor

Data
Reg.

W
ri
te

B
a
ck

Graph Reordering Graph Partition

Graph Preprocessing

Vertex Access Scheduling Execution Scheduling

Value Value

N. M Multiplexer

Value

Parallel Source
Accumulator

Fig.5. Workflow decomposition of AccuGraph in accordance with three major components (described in Fig.1) of preprocessing, parallel
graph computation and runtime scheduling.

delay the writeback of vertex data. All intermediately-

updated vertex data is stored into a specially designed

scratchpad memory. If and only if all associated edges

are finished, the updated value of a given vertex can be

written into the main memory.

Runtime Scheduling. To better leverage the lim-

ited number of pins of parallel accumulator, AccuGraph

uses an improved frontier-based scheduling. In the as-

pect of computational scheduling, it separately handles

the pipelines of vertices and edges for reducing the out-

of-order memory accesses. The edge pipelines access

each edge sequentially while each edge pipeline dynam-

ically adjusts the number of vertices to be processed via

a degree-aware scheduling mechanism. As for memory

364 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

access scheduling, the sparsity of graph often leads to

the imbalance of accessing vertices. AccuGraph signifi-

cantly enhances the throughput of on-chip computation

by presenting an out-of-order approach for accessing the

value of the vertex.

7 Challenges and Opportunities

With the recent efforts, graph processing accelera-

tors have experienced a series of significant technical

advances for achieving high throughput and energy ef-

ficiency. Nevertheless, there still has a long way for

graph accelerators in practical use for many challenges.

As emerging architectural technologies arise, we would

also have great opportunities to make significant pro-

gresses in not only performance and energy efficiency

but also supporting technologies for easy use, evalua-

tion and maintenance.

7.1 Challenges

Programmability. The development and the exe-

cution of graph algorithms on existing accelerators rely

deeply on the low-level programming with hardware de-

scription languages. This enforces that developers have

to know the underlying hardware details. Programming

for graph programs is non-trivial with a long develop-

ment cycle. Though high-level programming languages,

e.g., C/C++, make this relatively easy, there still lack

the effective transformation and mapping of the high-

level programming languages to the low-level hardware

description languages. The general-purpose high-level

synthesis (HLS) offers a viable solution, which is, how-

ever, potentially inefficient due to non-full consideration

of graph characteristics. It is of great importance to

build easy-to-use programming environments for graph

processing accelerators.

Supporting Large Graphs. The scale of the graph

size is still exploding, which can be easily beyond the

available capacity of on-chip memories of a single graph

accelerator. For supporting large graphs, an intuitive

method is to extend to use larger memory for storing

the whole graph. For example, we can use a cluster

network of HMCs. However, this may cost a high price

at routing the requisite data. An alternative approach

is to use the heterogeneous graph processing. By us-

ing the host memory with more than Terabyte capac-

ity, we can thus have sufficient memory space to store

large graphs[26,28]. Also, a similar design is to connect

multiple graph accelerators together and manage them

uniformly[28,29]. Nevertheless, the problem is that a sig-

nificant amount of communication overhead may occur

between different graph accelerators.

Time-Evolving Graphs. Existing studies are mostly

limited to static graph structures. The graph data may

easily change in structure over time. Dynamic graph

processing is a hot research topic[125−127]. For example,

users of Twitter may update and delete a post at any

time. They can also add and delete comments on this

post. The complex and changeable graph data struc-

ture has a high requirement for the latency of graph

accelerators. Some methods based on the incremental

variation of the subgraph have achieved relatively good

results under small-scale increments[126], but the effi-

cient processing of the large-scale time-evolving graph

is still an open problem.

Complex Attributes of Graphs. Different areas have

different requirements for the attributes of graphs. For

example, two nodes may involve a large number of as-

sociated edges that can be handled in parallel. This

is common for the server links and road connections.

In addition, a number of values can be also associated

to a vertex or edge[128]. More complex is that the at-

tributes of a graph in the graph network (GN) can be

a vector, a set or even another graph[129]. These com-

plex attributes of the graphs can result in totally diffe-

rent computing and memory requirements that existing

graph processing research can neither fit nor be handled

efficiently, let alone hardware circuit designs.

Machine Learning on Graphs. Deep learning or ma-

chine learning algorithms are also emerging on graphs.

There are some research advances on how to represent

graph structures into matrics[130,131]. This gives a new

dimension of two emerging fields: machine learning and

graph processing.

Hardware Interfaces. Almost all of existing graph

processing accelerators are used solely. They work un-

der the premise that the graph data is placed in its on-

chip memory. For supporting large graphs as described

previously, requisite external connections to either an-

other accelerators or host processor are needed. This

hence requires some extra interfaces for the connection

and extension. Unfortunately, few customized graph

processing accelerators have such kind of effective in-

terfaces (instead of slow PCI Express lane connection)

to support better communication and energy efficiency

for graph processing.

Tool Chains. So far, there have been also no con-

venient tools for programmers to develop and use these

graph accelerators easily. Particularly, if the graph pro-

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 365

grams come across the concurrency and performance

bugs, programmers have to rebuild and re-wire the

hardware circuit, which is notoriously costly. There

still lacks a chain of utility tools for helping understand,

diagnose or even fix these low-level problems during

development.

Compiler Support. Compiler supporting is an effec-

tive way to fill the gap between high-level programming

and low-level graph iteration. Symbolic execution is

used to parallelize the dependent computations of ver-

tices for achieving compelling performance results on

general-purpose processors[132]. Execution parallelism

can be also explored for irregular applications by ag-

gressively scheduling execution dependencies at com-

pile time[133]. However, more non-trivial efforts are

still needed for graph processing accelerators to inte-

grate these advanced compilation features due to the

fact that existing (hardware and software) ecosystem

surrounding graph accelerators are far from mature.

7.2 Opportunities

Widespread Adoption. To the best of our knowledge,

graph processing has been used in many fields, e.g., so-

cial network, literature network, traffic network, and

knowledge atlas. The earlier work focuses on address-

ing typical problems regarding graph searching, ran-

dom walking, and graph clustering. Although there

emerge a few latest advances that are attempting to

solve the large, complex problems by leveraging graph

processing[134], the application of graph processing still

needs to expand. It is a series of open questions re-

garding how to leverage graph processing and further

renovate its hardware acceleration to solve wider prac-

tical problems.

Emerging Technologies. As discussed before, a few

recent studies have used emerging memory technologies

(e.g., HMC and ReRAM) to accelerate graph process-

ing, and made the good results in both performance and

energy. Nevertheless, the potentials of these emerging

technologies are still being under-utilized. For instance,

GraphR[70] uses just one layer ReRAM only, but the

fact is that the future ReRAM is often stacked. It is an

interesting question on how to use the stacked ReRAM

for graph processing acceleration in a more significant

way in practice. To this point, more effective and ef-

ficient techniques for better supporting emerging tech-

nologies have to be settled.

FPGA on the Cloud. FPGAs have been widely

adopted in industries to accelerate the datacenter[23]

for the high energy efficiency and performance. FPGA

providers such as Amazon, Baidu, and Tencent have

also offered an easy and flexible programming environ-

ment for the FPGA development on the cloud. Users

can directly program FPGA on the cloud with con-

venient GUI and sufficient open-source instances 2○.

The abundant available FPGA resources and inte-

grated development tools provide the opportunities

for agile development of FPGA graph processing

accelerators[22].

Rise of Specialized Architectures in Artificial Intel-

ligence. There has emerged a number of AI specialized

hardware accelerators in recent years[135,136]. These

hardware accelerators have been used to accelerate ma-

chine learning applications in the cloud 3○. The abun-

dant experience of existing AI accelerators can help

us understand the underlying architecture design. Be-

sides, a large number of educating resources and devel-

oping tools for AI accelerator development can promote

the procedure of architecture designs. These opportu-

nities brought by artificial intelligence accelerators can

significantly improve the efficiency of graph processing

accelerator development.

8 Conclusions

With the widely spreading graph applications, and

gradually increasing data size and the complexity in

big data analytics, the performance and the energy ef-

ficiency of graph processing have brought severe chal-

lenges to modern data processing eco-systems. There

has emerged a large amount of work that aims at ex-

ploring software optimizations to improve the perfor-

mance and energy efficiency of graph processing under

general-purpose architectures, e.g., multi-core CPUs[52]

and GPUs[6,8].

However, the significant gap between the unique

feature of graph processing and the hardware features

of general-purpose architectures limits the further im-

provement of performance and energy efficiency. Mem-

ory access efficiency suffers significantly from tradi-

tional memory hierarchy when facing the challenges of

the intuitive features in graph processing, e.g., the ir-

regularity and strong dependency[15,16]. GPUs also face

the drawbacks, e.g., control and memory divergence,

load imbalance and global memory access overhead[6].

2○http://www.plunify.com/en/plunify-cloud/, Jan. 2019.
3○http://cloud.google.com/tpu/, Jan. 2019.

366 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

That motivates the recent research efforts on develop-

ing new hardware architectures for graph processing.

With the trend and opportunities in domain-specific

architectures[20], e.g., open-source implementations and

agile chip development technics[22], customized graph

processing accelerators have emerged as a promising

solution to achieve both high performance and energy

efficiency.

In this paper, we investigated a wide spectrum of

studies on graph processing accelerators, and provided

a systematic view on their design and implementation.

Existing techniques have been categorized into three

core aspects: preprocessing, parallel graph computation

and runtime scheduling. For each aspect, we reviewed

the state-of-the-art techniques and made our remarks

on identifying the open problems for future research.

We also made a careful comparison of these studies,

and highlighted the importance of evaluation bench-

marks for graph processing accelerators. At last, we

summarized the challenges and opportunities of graph

processing accelerators, which, we believe, can help ar-

chitect efficient graph processing accelerators. In sum-

mary, graph processing accelerators are still a hot re-

search topic with many technical challenges and oppor-

tunities. We call for actions in this survey from different

communities, including computer architectures, soft-

ware systems, and databases, to respond these chal-

lenges cooperatively.

References

[1] Malewicz G, Austern M H, Bik A J, Dehnert J C, Horn

I, Leiser N, Czajkowski G. Pregel: A system for large-

scale graph processing. In Proc. ACM SIGMOD Int. Conf.

Management of Data, June 2010, pp.135-146.

[2] Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A,

Hellerstein J M. Distributed GraphLab: A framework for

machine learning and data mining in the cloud. Proceedings

of the VLDB Endowment, 2012, 5(8): 716-727.

[3] Shun J, Blelloch G E. Ligra: A lightweight graph process-

ing framework for shared memory. In Proc. the 18th ACM

SIGPLAN Symp. Principles and Practice of Parallel Pro-

gramming, February 2013, pp.135-146.

[4] Kyrola A, Blelloch G E, Guestrin C. GraphChi: Large-scale

graph computation on just a PC. In Proc. the 10th USENIX

Conf. Operating Systems Design and Implementation, Oc-

tober 2012, pp.31-46.

[5] Roy A, Mihailovic I, Zwaenepoel W. X-Stream: Edge-

centric graph processing using streaming partitions. In

Proc. the 24th ACM SIGOPS Symp. Operating Systems

Principles, November 2013, pp.472-488.

[6] Zhong J, He B. Medusa: A parallel graph processing sys-

tem on graphics processors. ACM SIGMOD Record, 2014,

43(2): 35-40.

[7] Khorasani F, Vora K, Gupta R, Bhuyan L N. CuSha:

Vertex-centric graph processing on GPUs. In Proc. the

23rd Int. Symp. High-Performance Parallel and Distributed

Computing, June 2014, pp.239-252.

[8] Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens J D.

Gunrock: A high-performance graph processing library on

the GPU. In Proc. the 21st ACM SIGPLAN Symp. Prin-

ciples and Practice of Parallel Programming, March 2016,

Article No. 11.

[9] Shi X, Luo X, Liang J, Zhao P, Di S, He B, Jin H. Frog:

Asynchronous graph processing on GPU with hybrid color-

ing model. IEEE Trans. Knowledge and Data Engineering,

2018, 30(1): 29-42.

[10] Fu Z, Personick M, Thompson B. MapGraph: A high level

API for fast development of high performance graph analy-

tics on GPUs. In Proc. the 2nd International Workshop on

Graph Data Management Experiences and Systems, June

2014, Article No. 2.

[11] Liu H, Huang H H. Enterprise: Breadth-first graph traver-

sal on GPUs. In Proc. Int. Conf. High Performance Com-

puting, Networking, Storage and Analysis, November 2015,

Article No. 68.

[12] Beamer S, Asanovic K, Patterson D. Locality exists in graph

processing: Workload characterization on an ivy bridge

server. In Proc. IEEE Int. Symp. Workload Characteriza-

tion, November 2015, pp.56-65.

[13] Malicevic J, Lepers B, Zwaenepoel W. Everything you al-

ways wanted to know about multicore graph processing but

were afraid to ask. In Proc. the 2017 USENIX Annual Tech-

nical Conf., July 2017, pp.631-643.

[14] Nai L, Hadidi R, Sim J, Kim H, Kumar P, Kim H. Graph-

PIM: Enabling instruction-level PIM offloading in graph

computing frameworks. In Proc. the 2007 IEEE Int. Symp.

High Performance Computer Architecture, February 2017,

pp.457-468.

[15] Yao P, Zheng L, Liao X, Jin H, He B. An efficient graph ac-

celerator with parallel data conflict management. In Proc.

Int. Conf. Parallel Architectures and Compilation Tech-

niques, November 2018, Article No. 8.

[16] Ham T J, Wu L, Sundaram N, Satish N, Martonosi M.

Graphicionado: A high-performance and energy-efficient

accelerator for graph analytics. In Proc. the 49th Annual

IEEE/ACM Int. Symp. Microarchitecture, October 2016,

Article No. 56.

[17] Nai L, Xia Y, Tanase I G, Kim H, Lin C Y. GraphBIG:

Understanding graph computing in the context of indus-

trial solutions. In Proc. Int. Conf. High Performance Com-

puting, Networking, Storage and Analysis, November 2015,

Article No. 69.

[18] Satish N, Sundaram N, Patwary M M, Seo J, Park J, Has-

saan M A, Sengupta S, Yin Z, Dubey P. Navigating the

maze of graph analytics frameworks using massive graph

datasets. In Proc. ACM SIGMOD Int. Conf. Management

of Data, June 2014, pp.979-990.

[19] Ben-Nun T, Sutton M, Pai S, Pingali K. Groute: An

asynchronous multi-GPU programming model for irregular

computations. In Proc. the 22nd ACM SIGPLAN Symp.

Principles and Practice of Parallel Programming, February

2017, pp.235-248.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 367

[20] Hennessy J, Patterson D. Domain specific architectures.

In Computer Architecture: A Quantitative Approach (6th

edition), Merken S, McFadden N (eds.), Elsevier, 2017,

pp.540-606.

[21] Ceze L, Hill M D, Sankaralingam K, Wenisch T F.

Democratizing design for future computing platforms.

arXiv:1706.08597, 2017. http://arxiv.org/abs/1706.08597,

Jun. 2017.

[22] Lee Y, Waterman A, Cook H et al. An agile approach

to building RISC-V microprocessors. IEEE Micro, 2016,

36(2): 8-20.

[23] Caulfield A M, Chung E S, Putnam A et al. A cloud-

scale acceleration architecture. In Proc. the 49th Annual

IEEE/ACM Int. Symp. Microarchitecture, October 2016,

Article No. 7.

[24] de Lorimier M, Kapre N, Mehta N et al. GraphStep: A

system architecture for sparse-graph algorithms. In Proc.

the 14th Annual IEEE Symp. Field-Programmable Custom

Computing Machines, April 2006, pp.143-151.

[25] Attia O G, Johnson T, Townsend K, Jones P, Zambreno

J. CyGraph: A reconfigurable architecture for parallel

breadth-first search. In Proc. the 2004 Int. Parallel and Dis-

tributed Processing Symp. Workshops, May 2014, pp.228-

235.

[26] Dai G, Chi Y, Wang Y, Yang H. FPGP: Graph process-

ing framework on FPGA a case study of breadth-first

search. In Proc. the 2006 ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, February 2016, pp.105-110.

[27] Zhou S, Chelmis C, Prasanna V K. High-throughput and

energy-efficient graph processing on FPGA. In Proc. the

24th IEEE Annual Int. Symp. Field-Programmable Custom

Computing Machines, May 2016, pp.103-110.

[28] Dai G, Huang T, Chi Y, Xu N, Wang Y, Yang H. Fore-

Graph: Exploring large-scale graph processing on multi-

FPGA architecture. In Proc. the 2017 ACM/SIGDA Int.

Symp. Field-Programmable Gate Arrays, February 2017,

pp.217-226.

[29] Ozdal M M, Yesil S, Kim T, Ayupov A, Greth J, Burns

S, Özturk Ö. Energy efficient architecture for graph analy-

tics accelerators. In Proc. the 43rd ACM/IEEE Annual Int.

Symp. Computer Architecture, June 2016, pp.166-177.

[30] Zhou J, Liu S, Guo Q, Zhou X, Zhi T, Liu D, Wang C,

Zhou X, Chen Y, Chen T. TuNao: A high-performance and

energy-efficient reconfigurable accelerator for graph pro-

cessing. In Proc. the 17th IEEE/ACM Int. Symp. Cluster,

Cloud and Grid Computing, May 2017, pp.731-734.

[31] Ayupov A, Yesil S, Ozdal M M, Kim T, Burns S, Özturk

Ö. A template-based design methodology for graph-parallel

hardware accelerators. IEEE Trans. Computer Aided De-

sign of Integrated Circuits and Systems, 2018, 37(2): 420-

430.

[32] Ahn J, Hong S, Yoo S, Mutlu O, Choi K. A scalable

processing-in-memory accelerator for parallel graph pro-

cessing. In Proc. the 42nd ACM/IEEE Annual Int. Symp.

Computer Architecture, June 2015, pp.105-117.

[33] Pawlowski J T. Hybrid memory cube (HMC). In Proc. the

23rd IEEE Hot Chips Symp., August 2011, Article No. 15.

[34] Kim J, Kim Y. HBM: Memory solution for bandwidth-

hungry processors. In Proc. the 26th IEEE Hot Chips

Symp., August 2014, Article No. 19.

[35] Wong H S, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee

B, Chen F T, Tsai M J. Metal-oxide RRAM. Proceedings

of the IEEE, 2012, 100(6): 1951-1970.

[36] Page L, Brin S, Motwani R, Winograd T. The PageR-

ank citation ranking: Bringing order to the web. Tech-

nical Report, Stanford InfoLab, 1999. http://ilpubs.stan-

ford.edu:8090/422/1/1999-66.pdf, Jan. 2019.

[37] McCune R R, Weninger T, Madey G. Thinking like a ver-

tex: A survey of vertex-centric frameworks for large-scale

distributed graph processing. ACM Trans. Computing Sur-

veys, 2015, 48(2): Article No. 25.

[38] Shi X, Zheng Z, Zhou Y, Jin H, He L, Liu B, Hua Q. Graph

processing on GPUs: A survey. ACM Trans. Computing

Surveys, 2018, 50(6): Article No. 81.

[39] Heidari S, Simmhan Y, Calheiros R N, Buyya R. Scalable

graph processing frameworks: A taxonomy and open chal-

lenges. ACM Trans. Computing Surveys, 2018, 51(3): Ar-

ticle No. 60.

[40] Gonzalez J E, Low Y, Gu H, Bickson D, Guestrin C. Power-

Graph: Distributed graph-parallel computation on natural

graphs. In Proc. the 10th USENIX Symp. Operating Sys-

tems Design and Implementation, October 2012, pp.17-30.

[41] Avery C. Giraph: Large-scale graph processing infrastruc-

ture on Hadoop. In Proc. the 2011 Hadoop Summit, June

2011, pp.5-9.

[42] Gonzalez J E, Xin R S, Dave A, Crankshaw D, Franklin

M J, Stoica I. GraphX: Graph processing in a distributed

dataflow framework. In Proc. the 11th USENIX Symp. Ope-

rating Systems Design and Implementation, October 2014,

pp.599-613.

[43] Teixeira C H, Fonseca A J, Serafini M, Siganos G, Zaki

M J, Aboulnaga A. Arabesque: A system for distributed

graph mining. In Proc. the 25th Symp. Operating Systems

Principles, October 2015, pp.425-440.

[44] Chen R, Shi J, Chen Y, Chen H. PowerLyra: Differentiated

graph computation and partitioning on skewed graphs. In

Proc. the 10th European Conf. Computer Systems, April

2015, Article No. 1.

[45] Zhu X, Chen W, Zheng W, Ma X. Gemini: A computation-

centric distributed graph processing system. In Proc. the

12th USENIX Symp. Operating Systems Design and Im-

plementation, November 2016, pp.301-316.

[46] Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams D,

Kalnis P. Mizan: A system for dynamic load balancing in

large-scale graph processing. In Proc. the 8th ACM Euro-

pean Conf. Computer Systems, April 2013, pp.169-182.

[47] Randles M, Lamb D, Taleb-Bendiab A. A comparative

study into distributed load balancing algorithms for cloud

computing. In Proc. the 24th IEEE Int. Conf. Advanced In-

formation Networking and Applications Workshops, April

2010, pp.551-556.

[48] Zhao Y, Yoshigoe K, Xie M, Zhou S, Seker R, Bian J.

LightGraph: Lighten communication in distributed graph-

parallel processing. In Proc. the 2004 IEEE Int. Congress

on Big Data, June 2014, pp.717-724.

[49] Wang P, Zhang K, Chen R, Chen H, Guan H. Replication-

based fault-tolerance for large-scale graph processing. In

Proc. the 44th Annual IEEE/IFIP Int. Conf. Dependable

Systems and Networks, June 2014, pp.562-573.

368 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

[50] Nguyen D, Lenharth A, Pingali K. A lightweight in-

frastructure for graph analytics. In Proc. the 24th ACM

SIGOPS Symp. Operating Systems Principles, November

2013, pp.456-471.

[51] Sundaram N, Satish N, Patwary M M, Dulloor S R, Ander-

son M J, Vadlamudi S G, Das D, Dubey P. GraphMat: High

performance graph analytics made productive. Proceedings

of the VLDB Endowment, 2015, 8(11): 1214-1225.

[52] Zhang K, Chen R, Chen H. NUMA-aware graph-structured

analytics. In Proc. the 20th ACM SIGPLAN Symp. Princi-

ples and Practice of Parallel Programming, February 2015,

pp.183-193.

[53] Han W S, Lee S, Park K, Lee J H, Kim M S, Kim J,

Yu H. TurboGraph: A fast parallel graph engine handling

billion-scale graphs in a single PC. In Proc. the 19th ACM

SIGKDD Int. Conf. Knowledge Discovery and Data Min-

ing, August 2013, pp.77-85.

[54] Yuan P, Zhang W, Xie C, Jin H, Liu L, Lee K. Fast iterative

graph computation: A path centric approach. In Proc. the

2004 Int. Conf. High Performance Computing, Network-

ing, Storage and Analysis, November 2014, pp.401-412.

[55] Zhu X, Han W, Chen W. GridGraph: Large-scale graph

processing on a single machine using 2-level hierarchical

partitioning. In Proc. the 2005 USENIX Annual Technical

Conf., July 2015, pp.375-386.

[56] Chi Y, Dai G, Wang Y, Sun G, Li G, Yang H. NXgraph:

An efficient graph processing system on a single machine.

In Proc. the 32nd IEEE Int. Conf. Data Engineering, May

2016, pp.409-420.

[57] Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T.

Mosaic: Processing a trillion-edge graph on a single ma-

chine. In Proc. the 12th ACM European Conf. Computer

Systems, April 2017, pp.527-543.

[58] Seo H, Kim J, Kim M S. GStream: A graph streaming pro-

cessing method for large-scale graphs on GPUs. In Proc.

the 20th ACM SIGPLAN Symp. Principles and Practice

of Parallel Programming, February 2015, pp.253-254.

[59] Soman J, Kishore K, Narayanan P J. A fast GPU algo-

rithm for graph connectivity. In Proc. the 24th IEEE Int.

Symp. Parallel & Distributed Processing, Workshops and

PhD Forum, April 2010, Article No. 87.

[60] McLaughlin A, Bader D A. Scalable and high performance

betweenness centrality on the GPU. In Proc. the 2014 Int.

Conf. High Performance Computing, Networking, Storage

and Analysis, November 2014, pp.572-583.

[61] Sariyüce A E, Kaya K, Saule E, Çatalyürek Ü V. Between-

ness centrality on GPUs and heterogeneous architectures.

In Proc. the 6th Workshop on General Purpose Processor

Using Graphics Processing Units, March 2013, pp.76-85.

[62] Davidson A A, Baxter S, Garland M, Owens J D. Work-

efficient parallel GPU methods for single-source shortest

paths. In Proc. the 28th IEEE Int. Parallel and Distributed

Processing Symp., May 2014, pp.349-359.

[63] Hong S, Chafi H, Sedlar E, Olukotun K. Green-Marl: A

DSL for easy and efficient graph analysis. In Proc. the 17th

Int. Conf. Architectural Support for Programming Lan-

guages and Operating Systems, March 2012, pp.349-362.

[64] Gharaibeh A, Reza T, Santos-Neto E, Costa L B, Salli-

nen S, Ripeanu M. Efficient large-scale graph processing

on hybrid CPU and GPU systems. arXiv:1312.3018, 2013.

http://arxiv.org/abs/1312.3018, Dec. 2018.

[65] Zhang T, Zhang J, Shu W, Wu M Y, Liang X. Efficient

graph computation on hybrid CPU and GPU systems. The

Journal of Supercomputing, 2015, 71(4): 1563-1586.

[66] Liu H, Huang H H, Hu Y. iBFS: Concurrent breadth-first

search on GPUs. In Proc. the 2016 Int. Conf. Management

of Data, June 2016, pp.403-416.

[67] Sengupta D, Song S L, Agarwal K, Schwan K. GraphRe-

duce: Processing large-scale graphs on accelerator-based

systems. In Proc. the 2015 Int. Conf. High Performance

Computing, Networking, Storage and Analysis, November

2015, Article No. 28.

[68] Kim M S, An K, Park H, Seo H, Kim J. GTS: A fast and

scalable graph processing method based on streaming topol-

ogy to GPUs. In Proc. the 2016 Int. Conf. Management of

Data, June 2016, pp.447-461.

[69] Han L, Shen Z, Shao Z, Huang H H, Li T. A novel ReRAM-

based processing-in-memory architecture for graph comput-

ing. In Proc. the 6th IEEE Non-Volatile Memory Systems

and Applications Symp., August 2017, Article No. 13.

[70] Song L, Zhuo Y, Qian X, Li H, Chen Y. GraphR: Accel-

erating graph processing using ReRAM. In Proc. the 2018

IEEE Int. Symp. High Performance Computer Architec-

ture, February 2018, pp.531-543.

[71] Zhang J, Khoram S, Li J. Boosting the performance

of FPGA-based graph processor using hybrid memory

cube: A case for breadth first search. In Proc. the 2017

ACM/SIGDA Int. Symp. Field-Programmable Gate Ar-

rays, February 2017, pp.207-216.

[72] Oguntebi T, Olukotun K. GraphOps: A dataflow li-

brary for graph analytics acceleration. In Proc. the 2016

ACM/SIGDA Int. Symp. Field-Programmable Gate Ar-

rays, February 2016, pp.111-117.

[73] Dai G, Huang T, Chi Y, Zhao J, Sun G, Liu Y, Wang

Y, Xie Y, Yang H. GraphH: A processing-in-memory ar-

chitecture for large-scale graph processing. IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems. doi:10.1109/TCAD.2018.2821565.

[74] Zhang J, Li J. Degree-aware hybrid graph traversal on

FPGA-HMC platform. In Proc. the 2018 ACM/SIGDA Int.

Symp. Field-Programmable Gate Arrays, February 2018,

pp.229-238.

[75] Zhou S, Kannan R, Min Y, Prasanna V K. FASTCF:

FPGA-based accelerator for stochastic-gradient-descent-

based collaborative filtering. In Proc. the 2018

ACM/SIGDA Int. Symp. Field-Programmable Gate

Arrays, February 2018, pp.259-268.

[76] Khoram S, Zhang J, Strange M, Li J. Accelerating graph

analytics by co-optimizing storage and access on an FPGA-

HMC platform. In Proc. the 2018 ACM/SIGDA Int. Symp.

Field-Programmable Gate Arrays, February 2018, pp.239-

248.

[77] Han L, Shen Z, Liu D, Shao Z, Huang H H, Li T. A novel

ReRAM-based processing-in-memory architecture for graph

traversal. ACM Trans. Storage, 2018, 14(1): Article No. 9.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 369

[78] Wang Q, Jiang W, Xia Y, Prasanna V. A message-passing

multi-softcore architecture on FPGA for breadth-first

search. In Proc. the 2010 Int. Conf. Field-Programmable

Technology, December 2010, pp.70-77.

[79] Umuroglu Y, Morrison D, Jahre M. Hybrid breadth-first

search on a single-chip FPGA-CPU heterogeneous platform.

In Proc. the 25th Int. Conf. Field Programmable Logic and

Applications, September 2015, Article No. 12.

[80] Zhou S, Prasanna V K. Accelerating graph analytics on

CPU-FPGA heterogeneous platform. In Proc. the 29th Int.

Symp. Computer Architecture and High Performance Com-

puting, October 2017, pp.137-144.

[81] Zhang M, Zhuo Y, Wang C, Gao M, Wu Y, Chen K,

Kozyrakis C, Qian X. GraphP: Reducing communication

for PIM-based graph processing with efficient data parti-

tion. In Proc. the 2018 IEEE Int. Symp. High Performance

Computer Architecture, February 2018, pp.544-557.

[82] Huang T, Dai G, Wang Y, Yang H. HyVE: Hybrid vertex-

edge memory hierarchy for energy-efficient graph process-

ing. In Proc. the 2018 Design, Automation and Test in Eu-

rope Conference and Exhibition, March 2018, pp.973-978.

[83] Ozdal M M, Yesil S, Kim T, Ayupov A, Greth J, Burns S,

Ozturk O. Graph analytics accelerators for cognitive sys-

tems. IEEE Micro, 2017, 37(1): 42-51.

[84] Kapre N. Custom FPGA-based soft-processors for sparse

graph acceleration. In Proc. the 26th IEEE Int. Conf.

Application-Specific Systems, Architectures and Processors,

July 2015, pp.9-16.

[85] Betkaoui B, Thomas D B, Luk W, Przulj N. A framework

for FPGA acceleration of large graph problems: Graphlet

counting case study. In Proc. the 2011 Int. Conf. Field-

Programmable Technology, December 2011, Article No. 2.

[86] Betkaoui B, Wang Y, Thomas D B, Luk W. A reconfig-

urable computing approach for efficient and scalable para-

llel graph exploration. In Proc. the 23rd IEEE Int. Conf.

Application-Specific Systems, Architectures and Processors,

July 2012, pp.8-15.

[87] Betkaoui B, Wang Y, Thomas D B, Luk W. Parallel FPGA-

based all pairs shortest paths for sparse networks: A human

brain connectome case study. In Proc. the 22nd Int. Conf.

Field Programmable Logic and Applications, August 2012,

pp.99-104.

[88] Nurvitadhi E, Weisz G, Wang Y, Hurkat S, Nguyen M,

Hoe J C, Mart́ınez J F, Guestrin C. GraphGen: An FPGA

framework for vertex-centric graph computation. In Proc.

the 22nd IEEE Annual Int. Symp. Field-Programmable

Custom Computing Machines, May 2014, pp.25-28.

[89] Attia O G, Grieve A, Townsend K R, Jones P, Zambreno J.

Accelerating all-pairs shortest path using a message-passing

reconfigurable architecture. In Proc. the 2015 Int. Conf. Re-

configurable Computing and FPGAs, December 2015, Arti-

cle No. 5.

[90] Engelhardt N, So H K. GraVF: A vertex-centric distributed

graph processing framework on FPGAs. In Proc. the 26th

Int. Conf. Field Programmable Logic and Applications, Au-

gust 2016, Article No. 62.

[91] Jin H, Yao P, Liao X, Zheng L, Li X. Towards dataflow-

based graph accelerator. In Proc. the 37th IEEE Int. Conf.

Distributed Computing Systems, June 2017, pp.1981-1992.

[92] Zhou S, Chelmis C, Prasanna V K. Accelerating large-scale

single-source shortest path on FPGA. In Proc. the 2015 Int.

Parallel and Distributed Processing Symposium Workshop,

May 2015, pp.129-136.

[93] Zhou S, Chelmis C, Prasanna V K. Optimizing memory per-

formance for FPGA implementation of PageRank. In Proc.

the 2015 Int. Conf. Reconfigurable Computing and FPGAs,

December 2015, Article No. 53.

[94] Jun S W, Wright A, Zhang S, Xu S, Arvind. GraFBoost:

Using accelerated flash storage for external graph analytics.

In Proc. the 45th ACM/IEEE Int. Symp. Computer Archi-

tecture, June 2018, pp.411-424.

[95] Thomas D, Moorby P. The Verilogr Hardware Description

Language (5th edition). Springer, 2002.

[96] Ashenden P J. The Designer’s Guide to VHDL (3rd edi-

tion). Morgan Kaufmann, 2008.

[97] Lee J, Kim H, Yoo S, Choi K, Hofstee H P, Nam G J,

Nutter M R, Jamsek D. ExtraV: Boosting graph processing

near storage with a coherent accelerator. Proceedings of the

VLDB Endowment, 2017, 10(12): 1706-1717.

[98] Kim G, Kim J, Ahn J H, Kim J. Memory-centric system

interconnect design with hybrid memory cubes. In Proc.

the 22nd Int. Conf. Parallel Architectures and Compilation

Techniques, September 2013, pp.145-155.

[99] Xu C, Niu D, Muralimanohar N, Balasubramonian R,

Zhang T, Yu S, Xie Y. Overcoming the challenges of

crossbar resistive memory architectures. In Proc. the 21st

IEEE Int. Symp. High Performance Computer Architec-

ture, February 2015, pp.476-488.

[100] Do J, Kee Y S, Patel J M, Park C, Park K, DeWitt D J.

Query processing on smart SSDs: Opportunities and chal-

lenges. In Proc. the 2013 ACM SIGMOD Int. Conf. Mana-

gement of Data, June 2013, pp.1221-1230.

[101] Jun S W, Liu M, Lee S, Hicks J, Ankcorn J, King M, Xu

S, Arvind. BlueDBM: An appliance for big data analytics.

In Proc. the 42nd ACM Annual Int. Symp. Computer Ar-

chitecture, June 2015, pp.1-13.

[102] Zhang J, Jung M. FlashAbacus: A self-governing flash-

based accelerator for low-power systems. In Proc. the 13th

EuroSys Conf., April 2018, Article No. 15.

[103] Ozdal M M. Emerging accelerator platforms for data cen-

ters. IEEE Design & Test, 2018, 35(1): 47-54.

[104] Weisz G, Melber J, Wang Y, Fleming K, Nurvitadhi

E, Hoe J C. A study of pointer-chasing performance on

shared-memory processor-FPGA systems. In Proc. the 2016

ACM/SIGDA Int. Symp. Field-Programmable Gate Ar-

rays, February 2016, pp.264-273.

[105] Gu B, Yoon A S, Bae D H, Jo I, Lee J, Yoon J, Kang J

U, Kwon M, Yoon C, Cho S, Jeong J, Chang D. Biscuit: A

framework for near-data processing of big data workloads.

In Proc. the 43rd Int. Symp. Computer Architecture, June

2016, pp.153-165.

[106] Son Y, Choi J, Jeon J, Min C, Kim S, Yeom H Y, Han

H. SSD-assisted backup and recovery for database systems.

In Proc. the 33rd IEEE Int. Conf. Data Engineering, April

2017, pp.285-296.

[107] Song W S, Gleyzer V, Lomakin A, Kepner J. Novel graph

processor architecture, prototype system, and results. In

Proc. the 2016 IEEE High Performance Extreme Comput-

ing Conference, September 2016, Article No. 59.

370 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

[108] Jin H, Yao P, Liao X. Towards dataflow based graph pro-

cessing. Science China Information Sciences, 2017, 60(12):

Article No. 126102.

[109] Windh S, Budhkar P, Najjar W A. CAMs as synchronizing

caches for multithreaded irregular applications on FPGAs.

In Proc. the 2015 ACM/IEEE Int. Conf. Computer-Aided

Design, November 2015, pp.331-336.

[110] Wang L, Yang X, Dai H. Scratchpad memory allocation for

arrays in permutation graphs. Science China Information

Sciences, 2013, 56(5): 1-13.

[111] Gao M, Ayers G, Kozyrakis C. Practical near-data process-

ing for in-memory analytics frameworks. In Proc. the 2015

Int. Conf. Parallel Architecture and Compilation, October

2015, pp.113-124.

[112] Faloutsos M, Faloutsos P, Faloutsos C. On power-law rela-

tionships of the Internet topology. ACM SIGCOMM Com-

puter Communication Review, 1999, 29(4): 251-262.

[113] Xie C, Chen R, Guan H, Zang B, Chen H. SYNC or

ASYNC: Time to fuse for distributed graph-parallel com-

putation. In Proc. the 20th ACM SIGPLAN Symp. Princi-

ples and Practice of Parallel Programming, February 2015,

pp.194-204.

[114] Ozdal M M, Yesil S, Kim T, Ayupov A, Burns S, Oz-

turk O. Architectural requirements for energy efficient exe-

cution of graph analytics applications. In Proc. the 2015

IEEE/ACM Int. Conf. Computer-Aided Design, November

2015, pp.676-681.

[115] Beamer S, Asanović K, Patterson D. Direction-optimizing

breadth-first search. In Proc. the 2012 Int. Conf. High Per-

formance Computing, Networking, Storage and Analysis,

November 2012, Article No. 12.

[116] Beamer S, Asanović K, Patterson D. The GAP bench-

mark suite. arXiv:1508.03619, 2015. http://arxiv.org/ab-

s/1508.03619, May 2017.

[117] Scarpazza D P, Villa O, Petrini F. Efficient breadth-first

search on the Cell/B.E. processor. IEEE Trans. Parallel

and Distributed Systems, 2008, 19(10): 1381-95.

[118] Milenković T, Lai J, Pržulj N. GraphCrunch: A tool for

large network analyses. BMC Bioinformatics, 2008, 9: Ar-

ticle No. 70.

[119] Hong S, Oguntebi T, Olukotun K. Efficient parallel graph

exploration on multi-core CPU and GPU. In Proc. the 2011

Int. Conf. Parallel Architectures and Compilation Tech-

niques, October 2011, pp.78-88.

[120] Matsumoto K, Nakasato N, Sedukhin S G. Blocked all-pairs

shortest paths algorithm for hybrid CPU-GPU system. In

Proc. the 13th IEEE Int. Conf. High Performance Com-

puting and Communications, September 2011, pp.145-152.

[121] Siek J G, Lee L Q, Lumsdaine A. The Boost Graph Li-

brary: User Guide and Reference Manual (PAP/CDR edi-

tion). Addison-Wesley Professional, 2001.

[122] Ma X, Zhang D, Chiou D. FPGA-accelerated transac-

tional execution of graph workloads. In Proc. the 2017

ACM/SIGDA Int. Symp. Field-Programmable Gate Ar-

rays, February 2017, pp.227-236.

[123] Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe C

E, SzalayA S. FlashGraph: Processing billion-node graphs

on an array of commodity SSDs. In Proc. the 13th USENIX

Conf. File and Storage Technologies, February 2015, pp.45-

58.

[124] Rodeh O. B-trees, shadowing, and clones. ACM Transac-

tions on Storage, 2008, 3(4): Article No. 2.

[125] Sha M, Li Y, He B, Tan K L. Accelerating dynamic graph

analytics on GPUs. Proceedings of the VLDB Endowment,

2017, 11(1): 107-120.

[126] Shi X, Cui B, Shao Y, Tong Y. Tornado: A system for real-

time iterative analysis over evolving data. In Proc. the 2016

Int. Conf. Management of Data, June 2016, pp.417-430.

[127] Chen H, Sun Z, Yi F, Su J. BufferBank storage: An eco-

nomic, scalable and universally usable in-network storage

model for streaming data applications. Science China In-

formation Sciences, 2016, 59(1): 1-15.

[128] Zhang M, Wu Y, Chen K, Qian X, Li X, Zheng W. Explor-

ing the hidden dimension in graph processing. In Proc. the

12th USENIX Conf. Operating Systems Design and Imple-

mentation, November 2016, pp.285-300.

[129] Battaglia P W, Hamrick J B, Bapst V et al. Rela-

tional inductive biases, deep learning, and graph networks.

arXiv:1806.01261, 2018. http://arxiv.org/abs/1806.01261,

Jun. 2018.

[130] Narayanan A, Chandramohan M, Venkatesan R, Chen L,

Liu Y, Jaiswal S. graph2vec: Learning distributed represen-

tations of graphs. arXiv:1707.05005, 2017. https://arxiv.o-

rg/abs/1707.05005, Jun. 2018.

[131] Ribeiro L F, Saverese P H, Figueiredo D R. Struc2vec:

Learning node representations from structural identity. In

Proc. the 23rd ACM SIGKDD Int. Conf. Knowledge Dis-

covery and Data Mining, August 2017, pp.385-394.

[132] Zheng L, Liao X, Jin H. Efficient and scalable graph parallel

processing with symbolic execution. ACM Trans. Architec-

ture and Code Optimization, 2018, 15(1): Article No. 3.

[133] Li Z, Liu L, Deng Y, Yin S, Wang Y, Wei S. Aggressive

pipelining of irregular applications on reconfigurable hard-

ware. In Proc. the 44th Annual Int. Symp. Computer Ar-

chitecture, June 2017, pp.575-586.

[134] Zheng L, Liao X, Jin H, Zhao J, Wang Q. Scalable con-

currency debugging with distributed graph processing. In

Proc. the 2018 Int. Symp. Code Generation and Optimiza-

tion, February 2018, pp.188-199.

[135] Jouppi N P, Young C, Patil N et al. In-datacenter per-

formance analysis of a tensor processing unit. In Proc. the

44th Annual Int. Symp. Computer Architecture, June 2017,

pp.1-12.

[136] Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam

O. DianNao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In Proc. the 19th Int.

Conf. Architectural Support for Programming Languages

and Operating Systems, March 2014, pp.269-284.

Chuang-Yi Gui is currently a Ph.D.

candidate in the School of Computer

Science and Technology, Huazhong

University of Science and Technology

(HUST), Wuhan. He received his B.E.

degree in information security at HUST,

Wuhan, in 2017. His current research

interests include graph processing and

reconfigurable computing.

Chuang-Yi Gui et al.: A Survey on Graph Processing Accelerators: Challenges and Opportunities 371

Long Zheng is now a postdoctoral

researcher in the School of Computer

Science and Technology, Huazhong

University of Science and Technology

(HUST), Wuhan. He received his Ph.D.

degree in computer engineering at

HUST, Wuhan, in 2016. His current

research interests include program

analysis, runtime systems, and configurable computer

architecture with a particular focus on graph processing.

Bingsheng He is currently an

associate professor at Department of

Computer Science, School of Comput-

ing, National University of Singapore

(NUS), Singapore. Before joining NUS

in May 2016, he held a research position

in the System Research group of Mi-

crosoft Research Asia (2008-2010) and

a faculty position in Nanyang Technological University,

Singapore. He got his Bachelor’s degree in computer

science and engineering in Shanghai Jiao Tong University

(1999-2003), Shanghai, and his Ph.D. degree in computer

science in Hong Kong University of Science & Technology

(2003-2008), Hong Kong. His current research interests

include big data management systems (with special inter-

ests in cloud computing and emerging hardware systems),

parallel and distributed systems and cloud computing.

Cheng Liu is an associate professor

of Institute of Computing Technology

(ICT), Chinese Academy of Sciences

(CAS), Beijing. He received his B.E.

and M.E. degree in microelectronic

engineering from Harbin Institute of

Technology, Harbin, in 2009 and his

Ph.D. degree in computer engineering

from The University of Hong Kong, Hong Kong, in

2016. His research focuses on FPGA-based reconfigurable

computing and domain-specific computing.

Xin-Yu Chen is now a Ph.D. candi-

date of computer science in the National

University of Singapore, Singapore. He

received his B.E. degree in electronic

science and technology from Harbin

Institute of Technology, Weihai, in 2016.

His current research interests include

FPGA-based heterogeneous computing

and database systems.

Xiao-Fei Liao received his Ph.D.

degree in computer science and en-

gineering from Huazhong University

of Science and Technology (HUST),

Wuhan, in 2005. He is now the vice

dean in the School of Computer Science

and Technology at HUST, Wuhan.

He has served as a reviewer for many

conferences and journal papers. His research interests

are in the areas of system software, P2P system, cluster

computing and streaming services. He is a member of

IEEE and the IEEE Computer Society.

Hai Jin is a Cheung Kung Scholars

Chair Professor of computer science and

engineering at Huazhong University

of Science and Technology (HUST),

Wuhan. Jin received his Ph.D. degree

in computer engineering from HUST,

Wuhan, in 1994. In 1996, he was

awarded a German Academic Exchange

Service fellowship to visit the Technical University of

Chemnitz in Germany. Jin worked at The University of

Hong Kong between 1998 and 2000, and as a visiting

scholar at the University of Southern California between

1999 and 2000. He was awarded Excellent Youth Award

from the National Science Foundation of China in 2001.

Jin is the chief scientist of ChinaGrid, the largest grid com-

puting project in China, and the chief scientist of National

973 Basic Research Program Project of Virtualization

Technology of Computing System, and Cloud Security.

Jin is a fellow of CCF and IEEE, and a member of ACM.

He has co-authored 15 books and published over 600

research papers. His research interests include computer

architecture, virtualization technology, cluster computing

and cloud computing, peer-to-peer computing, network

storage, and network security.

