
OA-LAMA: An Outlier-Adaptive LLM Inference Accelerator
with Memory-Aligned Mixed-Precision Group Quantization

Huangxu Chen∗†, Yingbo Hao∗‡, Yi Zou‡, Xinyu Chen§†
†The Hong Kong University of Science and Technology (Guangzhou), ‡South China University of Technology

hchen499@connect.hkust-gz.edu.cn, 202410193423@mail.scut.edu.cn, zouyi@scut.edu.cn, xinyuchen@hkust-gz.edu.cn

Abstract—Large language models (LLMs) face significant deploy-
ment challenges due to their substantial memory and computational
demands. While low-precision quantization offers a promising solution,
the presence of activation outliers severely degrades model accuracy.
Existing approaches either compromise hardware efficiency through
misaligned memory access or sacrifice quantization granularity through
rigid bit-width allocation, particularly when handling non-uniform tensor
distributions across and within layers. This paper presents a hardware-
software co-designed framework resulting in an outlier-adaptive LLM
inference accelerator with memory-aligned mixed-precision group quan-
tization, named OA-LAMA. The framework comprises three key in-
novations: First, an outlier-adaptive memory-aligned mixed-precision
group (OAMAG) format with a novel outlier reordering technique
is proposed to preserve accuracy while maintaining DRAM-aligned
memory access. Second, a distribution-aware group allocation strategy is
proposed to address inter-layer outlier ratio variance. Finally, we design
the OA-LAMA hardware architecture with a three-level accumulation
architecture and timing-balanced processing elements to support the
OAMAG format efficiently. Evaluations demonstrate that OA-LAMA
achieves better accuracy than state-of-the-art 4-bit quantization methods
while delivering 1.21–3.09× performance improvement and 1.35–2.47×
energy efficiency gains over leading LLM accelerators. OA-LAMA
establishes new Pareto frontiers in accuracy-efficiency co-optimization
for LLM inference. OA-LAMA is open-sourced at https://github.com/
CLab-HKUST-GZ/ICCAD25 OA-LAMA.git.

Index Terms—Large Language Model (LLM), Hardware-Software Co-
Design, Accelerator, Mix-Precision Group Quantization.

I. INTRODUCTION

Large language models (LLMs) have demonstrated remarkable
performance across a wide range of tasks, including natural lan-
guage understanding [6] and generation [7], [8]. However, their
efficient deployment remains challenging due to substantial memory
consumption and computational demands. For instance, DeepSeek-
R1 [9], with 671 billion parameters, requires 1,342 GB of memory
in FP16 precision, far exceeding the 192 GB memory capacity of the
latest NVIDIA B200 GPU [10], let alone other resource-constrained
scenarios. Among existing optimization techniques, quantization has
emerged as one of the most effective methods for reducing the
inference cost of LLMs [11], [12]. Traditionally, neural network
quantization can be categorized into two approaches: Post-Training
Quantization (PTQ) [1]–[5], [11], [13]–[20] and Quantization-Aware
Training (QAT) [11], [21]–[23]. While QAT generally achieves supe-
rior performance, retraining LLMs is often impractical in real-world
deployment due to their massive scale and prohibitive computational
overhead [2]. Consequently, PTQ is more widely adopted in practice.

The inference process of LLMs consists of two phases: the prefill
phase and the decoding phase. The prefill phase is primarily compute-
bound, while the decoding phase with small batch sizes is mainly
memory-bound [24]. Current quantization approaches for LLMs can
be categorized into three types: (1) Weight-only quantization: It
primarily addresses memory-bound General Matrix-Vector Multiply
(GEMV) operations in the decoding phase [13], [17], [23]. (2)

*These authors have contributed equally to this work.
§Corresponding author.

Weight-Activation quantization: It simultaneously addresses both
memory-bounded GEMV operations in the decoding phase and
compute-bound General Matrix Multiply (GEMM) pressure during
the prefill phase [1], [3]–[5], [14], [15], [19], [20]. (3) Key-Value
(KV) cache quantization: It targets the decoding phase for long-
sequence or large-batch scenarios [25], [26], where the memory
overhead from KV cache can exceed that of the model weights
themselves [27]. The KV cache can be conceptually regarded as a
specialized form of activation that persists across sequential decoding
steps. Unlike transient activations in conventional forward passes, the
KV cache retains computed key-value states from previous tokens
to enable efficient autoregressive generation. Among these, weight-
activation quantization provides the most comprehensive benefits, as
it simultaneously targets memory-bound and compute-bound bottle-
necks. In this work, we target weight-activation quantization while
also supporting KV cache quantization to achieve comprehensive
optimization benefits.

Despite recent progress, achieving accurate and efficient low-bit
quantization (e.g., 4-bit quantization) remains challenging due to the
presence of activation outliers [12]. These rare but large-magnitude
values disproportionately impact scaling factors, causing significant
quantization errors for normal values in the same group. While group-
wise quantization [3], [13], [17] and mixed-precision techniques [2],
[16], [21], [28] have been proposed to address this, they often suffer
from precision-efficiency trade-offs, hardware overhead from FP16
scaling, and misalignment with DRAM memory structures.

To understand the design trade-offs in existing work, we summa-
rize key characteristics of representative quantization approaches in
Table I. Most notably, methods such as OPAL [1] and Oltron [5]
preserve outlier accuracy using high-bit-width formats like BF16
or FP12, but incur substantial memory and hardware costs. Others,
like Atom [3] and Tender [4], use fixed bit-width allocations or 1-
bit rescaling, leading to either performance bottlenecks or limited
quantization granularity. Additionally, DRAM alignment is often
overlooked or sacrificed, as seen in all prior methods except Olive [2],
despite its known impact on off-chip bandwidth efficiency. None of
the existing approaches simultaneously support KV cache quanti-
zation, group-wise quantization, DRAM-aligned formats, and zero-
overhead scaling—a gap that this work aims to close.

In this paper, we propose OA-LAMA, a hardware-software
co-designed accelerator that introduces a novel Outlier-Adaptive
Memory-Aligned Group (OAMAG) format. OA-LAMA is designed
to preserve outlier precision, ensure memory alignment, and support
efficient hardware execution for fine-grained mixed-precision group
quantization in LLM inference. Our key contributions are:
• Outlier-Adaptive Memory-Aligned Group (OAMAG) Format: A

mixed-precision group format that leverages outlier scattering and
exponent-based scaling to preserve outliers while maintaining
memory-aligned layout for DRAM efficiency.

• Distribution-Aware Group Allocation Strategy: A lightweight
MSE-based optimization that dynamically determines the propor-

https://github.com/CLab-HKUST-GZ/ICCAD25_OA-LAMA.git
https://github.com/CLab-HKUST-GZ/ICCAD25_OA-LAMA.git

TABLE I: Quantization Method Comparison

Method OPAL [1] Olive [2] Atom [3] Tender [4] Oltron [5] OAMAG (Ours)

KV Cache Support no no yes yes no yes

Group Quantization yes no yes yes no yes

Accuracy Outlier Bit-Width BF16 Abfloat8 INT8 INT4 FP8/FP12 INT8

Efficiency
Scale Type Exponential FP16 FP16 1-bit Rescale FP16 Exponential

Dequantize Pattern Shifting Multiplication Multiplication Multiplication Multiplication Shifting

Outlier/Scale Bit-Width Overhead 10.25% 0% 6.25% ∼1.0% 2.5% 0%

Aligned Memory Access Computational Level no yes yes yes yes yes

DRAM Level no yes no no no yes

tion of outlier and normal groups per layer, adapting to inter-layer
outlier variation without manual tuning.

• Efficient Accelerator Architecture: A weight-stationary systolic
array architecture with a three-level accumulation architecture,
timing-balanced processing elements (PEs) and OAMAG en-
coders/decoders, which efficiently supports OAMAG quantization
and enables synchronized high-throughput execution across mixed-
precision PEs.
Through extensive evaluation on OPT and LLaMA models, OA-

LAMA achieves 1.21–3.09× speedup and 1.35–2.47× energy effi-
ciency improvements over state-of-the-art 4-bit quantization accelera-
tors while consistently outperforming them in accuracy. These results
demonstrate OA-LAMA’s strength in pushing the frontier of outlier-
aware LLM accelerator.

II. BACKGROUND AND MOTIVATION

This section examines research trends in LLM quantization, cov-
ering group-wise quantization and mixed-precision quantization. We
then identify two major challenges facing current outlier-handling
techniques and outlier-aware accelerator designs and propose two
solutions to address these challenges.

A. Quantization for LLMs

Basic quantization. The quantization process for neural networks
can be formally expressed as follows:

W ′ = ⌊W
s
⌉, s =

max(|W |)
2n−1 − 1

, (1)

where W and W ′ denote the original and quantized data respectively,
s is the scaling factor, and n specifies the quantization bit-width.
The scaling factor s is primarily determined by the maximum of W .
Traditional neural network quantization typically operates at either
tensor-level or channel-level granularity [11]. However, when applied
to LLMs, the presence of extreme outliers significantly impacts the
determination of s at these coarse granularities, leading to substantial
quantization errors [14], [18].

Group quantization. To address this limitation, state-of-the-art
(SOTA) approaches adopt group-wise quantization schemes, where
a group of contiguous elements share a common scaling factor
s [3], [13], [17]. This finer-grained quantization approach effectively
localizes the impact of outliers to smaller regions, thereby improving
post-quantization model accuracy. However, the FP16 per-group
scale introduces additional dequantization overhead. Recently, the
Microscaling (MX) data format has emerged as an alternative fine-
grained quantization scheme [29], [30]. When employing the MX
format, the quantization formula can be reformulated as:

W ′
g = ⌊Wg ≫ sg⌉, sg = ⌊log2(

max(|Wg|)
2n−1 − 1

)⌋, (2)

0 2000 4000
Channel

0.0

0.5

1.0

m
ea

n(
|X
|)

q_proj

(a) Per-channel absolute mean values
in the q_proj layer activations.

0 2000 4000
Channel

0.0

0.5

1.0

lo
g 2
(m

ea
n(
|X
|))

q_proj, k_proj, v_proj
o_proj
fc1
fc2

(b) Log2-scaled absolute mean values
after reordering across layers.

Fig. 1: Outlier distribution within and across layers of OPT-6.7B.

where Wg , W ′
g and sg represent the group-wise original data, quan-

tized data, and scaling factor, respectively. This formula replaces the
conventional multiply-divide operations with more hardware-efficient
bit-shift operations, offering significant improvements in performance
and resource utilization. However, despite the inherent precision
limitation of exponent-based scaling, there remains a notable research
gap in developing efficient architectural support for such novel
formats in modern computing systems.

Mixed-precision quantization. Another intuitive approach in-
volves mixed-precision quantization, where outliers are stored with
higher precision to reduce quantization errors. The early works
primarily focus on improving the precision of outliers at the element-
wise level [2], [16], [21], [28]. For instance, a coordinate list [16],
[28] can be employed to separate outliers from normal values.
However, such method leads to a large hardware overhead and low
performance benefits. Alternatively, recent researches have revealed
that outliers in LLMs tend to concentrate in specific channels [14],
[18]. State-of-the-art works tend to perform higher-precision quan-
tization for these specific channels at the channel-wise level, thus
reducing hardware overhead with better performance gain [3]–[5],
[13], [14], [18].

B. Challenges of Outlier-aware Quantization

However, current outlier-aware research still faces the following
two challenges, which make the implementation of mixed-precision
quantization and group quantization difficult.

Challenge 1: Non-uniform outlier distribution across and within
layers. Outlier distribution in LLMs is highly skewed both across
and within layers. As illustrated in Fig. 1(a), certain channels in
the q_proj layer of OPT-6.7B [31] exhibit significantly higher
activation magnitudes, even after normalization. This intra-layer
imbalance implies that a small subset of channels contains most
of the quantization-critical outliers. Fig. 1(b) shows that outlier-rich
channels vary significantly across layers. Assuming the 3σ criterion is
used to identify outlier channels, the portions above the dashed lines

Tile1 Tile2

(a) Original

Tile1 Tile2

(b) OVP

Tile1 Tile2

(c) TOBE

Tile1 Tile2

(d) OAMAG

Normal

Outlier

Index

Scale

Unaligned

Fig. 2: Comparison between different methods to achieve aligned
memory.

represent the outlier channels detected in each layer. For example, in
q_proj, k_proj, and fc1, the number and magnitude of outlier
channels differ from those in o_proj.

Existing static allocation schemes [1], [3], [5] fail to adapt to
this variability. Allocating a fixed number of outlier channels across
all layers leads to under-provisioning in layers with higher outlier
densities, resulting in quantization error and accuracy degradation.
Conversely, over-provisioning in layers with fewer outliers wastes
precision budgets and reduces overall hardware efficiency. Channel
reordering techniques [3]–[5] have been proposed to group out-
lier channels for improved precision allocation, yet these methods
typically assume layer-invariant reordering and are not designed
to integrate effectively with fine-grained group quantization. As a
result, the combined challenge of intra-layer imbalance and inter-
layer variance remains unresolved in existing designs.

Challenge 2: Efficient hardware support for fine-grained group
quantization with memory alignment. While reducing group size
improves quantization granularity and mitigates outlier interference, it
introduces significant overhead in dequantization operations. Increas-
ing the number of groups leads to more scaling factors, complicating
control logic and hardware scheduling. Current hardware implemen-
tations [1], [3], [4] typically support coarse-grained group sizes (e.g.,
128/256/1024) instead of fine-grained ones (e.g., 8/16/32). However,
this creates a significant barrier for efficient hardware support of finer-
grained group quantization.

Another major issue lies in memory alignment. Storing outliers
at higher bit-widths typically leads to unaligned memory layouts,
disrupting DRAM bandwidth and introducing irregular memory
access patterns. To illustrate this, Fig. 2 compares four existing
methods: Conventional implementation preserves full outlier values
but results in misaligned memory tiles (Fig. 2(a)). OVP (Outlier-
Victim Pair) [2] sacrifices adjacent normal values to encode outliers,
thus reducing accuracy (Fig. 2(b)). TOBE [5] achieves tile-level
outlier balancing but loses compatibility with off-chip memory access
pattern (Fig. 2(c)), and introduces latency bottlenecks due to timing
divergence between high-precision and low-precision heterogeneous
processing elements (PEs). OA-LAMA, proposed in this paper,
maintains both DRAM-level memory alignment and outlier precision
while enabling efficient PE scheduling (Fig. 2(d)). Overall, the core
difficulty lies in balancing precision allocation, memory alignment,
and hardware compatibility, particularly when integrating outlier
handling into low-bit quantization with high throughput demands.

Average 4 bit

Outlier Group

Normal Group

Average 4 bit

4-bit Scale 3-bit Normal 4-bit Normal 8-bit Outlier

Fig. 3: Data structure in OAMAG format

C. Motivation for OA-LAMA

The analysis above reveals a fundamental trade-off space be-
tween accuracy, hardware efficiency, and scalability in outlier-aware
quantization. Effective handling of non-uniform outlier distributions
requires dynamic precision allocation, while hardware efficiency
demands strict memory alignment and synchronized mixed-precision
compute.
Solution 1: OAMAG format with outlier channel reordering. To
address the imbalanced outlier/normal ratio across different layers,
we introduce an outlier-adaptive memory-aligned mixed-precision
group (OAMAG) format, which includes two group formats. To
organically combine the outlier channel reordering technique with
these formats, we propose a group-wise outlier channel reordering
approach in this work, which scatters one outlier channel per group
to minimize quantization error. Our reordering method utilizes a
recurring reordering technique that compensates for the additional
bitwidth overhead from supporting outlier channels by reducing the
bitwidth of less significant trailing group values. We also employ
a distribution-aware group allocation method to dynamically assign
appropriate proportions of these two group formats to each layer
based on its specific distribution.

Solution 2: Efficient systolic array unit with three-level accumu-
late architecture and timing-balanced PEs. To achieve memory
alignment while maintaining computational efficiency and model
accuracy, OA-LAMA introduces a three-level accumulation archi-
tecture with timing-balanced PEs to support our proposed memory-
aligned format. The three-level accumulation architecture efficiently
implements fine-grained group dequantization by incorporating tile
accumulators within the systolic array. For the timing-balanced PEs,
we fuse low-precision PEs to fully utilize their timing slack, thereby
improving overall resource utilization. Through these techniques
with an OAMAG encoder/decoder design, OA-LAMA effectively
enhances hardware computation efficiency under fine-grained quan-
tization while maintaining memory-aligned access patterns and opti-
mizing computational resource usage.

III. OUTLIER-ADAPTIVE MIXED-PRECISION QUANTIZATION

This section presents our outlier-adaptive mixed-precision group
quantization method, which combines a novel reordering method and
OAMAG format with an adaptive group allocation strategy.

A. Outlier-Adaptive Memory-Aligned Group (OAMAG) Format

To address the inter-layer imbalance in outlier distribution, we pro-
pose a hybrid group quantization scheme that combines two distinct
formats - outlier groups and normal groups - to effectively han-
dle layer-wise heterogeneity while maintaining hardware efficiency.
The design of these formats carefully considers both computational
flexibility and memory alignment requirements, achieved through
strategic bit-width allocation to accommodate both outlier values and
exponential scaling factors.

As illustrated in Fig. 3, the OAMAG format employs optimized
data structures for each group type. Building upon prior work
demonstrating the effectiveness of 4-bit exponential scaling [1], our

TABLE II: Comparison of Different Group Sizes in OAMAG Format

Wiki2 PPL(↓) Group Size
8 16 32 64

Llama-7B 6.53 6.47 6.67 6.96
OPT-6.7B 11.95 11.69 12.79 14.90

Inputs

Xm×k
AbsMean ArgSort Reshape ReshapeTranspose

0.5

0.4

1.8

0.7

0.2

9.1

2.1

1.3

2.4

1.1

0.6

0.3

9.1

0.5

0.4

1.8

0.7

0.2

2.1

1.3

2.4

1.1

0.6

0.3

9.1

0.5

0.41.8 0.7

0.22.1

1.32.4

1.1

0.6 0.3

9.1

0.5

0.4

1.8

0.7

0.2

2.1

1.3

2.4

1.1

0.6

0.3

9.1

0.5

0.4

1.8

0.7

0.2

2.1

1.3

2.4

1.1

0.6

0.3

Outlier
Group

Normal
Group

Normal
Group

Group Size
1 2 3 4 5

Fig. 4: Group-wise Outlier Scattering Method

implementation carefully balances precision and hardware regularity.
For outlier groups, we allocate 8-bit representation for outlier values
while quantizing 8 non-significant normal values to 3-bit to maintain
an average 4-bit bandwidth. Normal groups employ a similar strat-
egy, using 3-bit quantization for 4 non-significant normal values to
compensate for scaling factor overhead while keeping the majority
of data in 4-bit format.

The selection of group size presents a fundamental design trade-
off distinct from conventional uniform-bitwidth group quantization.
Larger group sizes reduce the number of outlier groups, potentially
leaving significant outliers unprotected, while smaller sizes increase
the proportion of 3-bit values, both of which can adversely affect
model accuracy. Through comprehensive evaluation across different
models, as shown in Table II, we identify 16 as the optimal group size.
Notably, we deliberately avoid 2-bit quantization for compensation
due to its demonstrated negative impact on model accuracy, a finding
supported by both prior research [32] and our experiments.

B. Group-wise Outlier Scattering Method

Leveraging the channel-wise clustering property of outliers es-
tablished in Section II-A, we propose a novel group-wise outlier
scattering method for the OAMAG format, illustrated in Fig. 4.
This technique strategically redistributes outliers through channel
reordering, concentrating them at the head of each group while
relegating the non-significant channels to the tail positions, which
is consistent with our OAMAG format to compress non-significant
normal values bit-width.

The proposed channel reordering methodology involves five key
computational stages: ➊ Absolute mean values are computed along
the channel dimension of the input activations. ➋ Channel indices
are sorted based on these computed mean magnitudes. ➌ The sorted
indices are then reshaped into a two-dimensional matrix according
to the predetermined group size specification. ➍ Through matrix
transposition, this operation systematically redistributes outlier chan-
nels to leading positions within each group while simultaneously
allocating the least significant channels to terminal positions. ➎ The
restructured matrix is flattened to generate the final reordering indices
that optimize both outlier protection and computational efficiency.

To minimize the hardware overhead of channel reordering, we
employ a static operator fusion approach that eliminates explicit
reordering operations during runtime. For weight tensors, the reorder-
ing can be efficiently performed offline during model compilation.
For activations, we strategically fuse the reordering operation with
preceding computational layers. Specifically, following the standard
transformer block architecture [33], we integrate the reordering of
query, key and value projection and first fully connection layers’

activations into the preceding layer normalization operations. Simi-
larly, the reordering for output projection and second fully connection
layers’ activation is incorporated into the weight output channels of
value projection and first fully connection layers, respectively. This
optimization approach has been demonstrated in prior work [3], [5]
to introduce negligible computational overhead while maintaining
full functional equivalence with explicit reordering implementations.
This is achieved by simply replacing explicit data movement with
lightweight address remapping logic that incurs less than 0.1% area
overhead. The fusion strategy effectively eliminates the need for
dedicated reordering hardware while preserving the benefits of our
group-wise outlier scattering method.

C. Distribution-Aware Group Allocation Strategy

To address the inter-layer variation in outlier proportions, we
propose a distribution-aware group allocation strategy to dynamically
assign appropriate proportions of two OAMAG formats to each layer
based on its specific distribution. As illustrated by the OAMAG
format data structure in Fig. 3, the optimal allocation should balance
between protecting sufficient outliers and minimizing the noise intro-
duced by excessive 3-bit quantization. Our approach systematically
evaluates potential threshold selections through mean squared error
(MSE) minimization, formulated as:

arg min
threshold

∑
(Q(W)Q(X)−WX)2, (3)

where Q represents the OAMAG quantization function, and W
denotes the layer’s weights, and X corresponds to the activations
from the calibration set. This formulation simultaneously captures
the statistical distribution of outliers and their impact on quantization
error while ensuring optimization occurs on representative input
patterns. When integrated with our channel reordering technique
(Fig. 4), the approach achieves effective outlier preservation with
controlled noise introduction through several key mechanisms: auto-
matic adaptation to layer-wise distributions without manual tuning,
optimal precision allocation balancing, and seamless OAMAG format
compatibility. The static threshold determination occurs during model
compilation using calibration data, eliminating runtime overhead
while ensuring layer-specific optimization based on actual activation
patterns and outlier distributions. This represents a significant advance
over fixed allocation schemes by providing both theoretical optimality
guarantees and practical implementation efficiency.

IV. HARDWARE ARCHITECTURE OF OA-LAMA

This section elaborates on the architectural details of the OA-
LAMA. Our design efficiently supports matrix operations with OA-
MAG formats and can be integrated with modern hardware acceler-
ators such as Google’s TPU [34].

A. Overview of OA-LAMA

Fig. 5(a) illustrates the OA-LAMA architecture that efficiently
supports the OAMAG format, including a weight-stationary sys-
tolic array with tile accumulators, three on-chip buffers for activa-
tion/weight/output, OAMAG EnDec (Encoders/Decoders) for data
conversion between the original format and the OAMAG format,
and an accumulator supporting the weight-stationary systolic array
design. The dataflow follows a four-stage pipeline similar to Google’s
TPU [34]: (1) Preloading On-Chip Buffers: OAMAG-formatted
data is loaded into activation/weight buffers. (2) Weight Loading:
Weights are decoded through OAMAG decoders to obtain INT3/4/8
values with a shared scale, then distributed across systolic array
tiles and tile accumulators. (3) Matrix Computation: Decoded
activations flow through the systolic array and compute with weights.

Weight
Preload

...

INT4 INT8

(b) Tile(a) OA-LAMA

O
u
tp

u
t

B
u

ff
e
r

Activation Buffer

Off-Chip Memory

O
A

M
A

G
 E

n
co

d
e
r

W
e
ig

h
t

B
u

ff
e
r

...
...

...
...

...
T
il
e
 A

cc
u

m
u

la
to

r
...

T
il
e
 A

cc
u

m
u

la
to

r

......

OAMAG Decoder

Control

Unit

A
cc

u
m

u
la

to
r

OAMAG EnDecBuffer AccumulatorTile

A
ct

iv
a
ti

o
n

S
ca

le
(4

b
)

Weight
Scale(4b)

++ ++

P
a
rt

ia
l
S
u

m
(3

2
b

)

<<<<

...

Tile Sum(16b)

Last Partial Sum(32b)

O
A

M
A

G
 D

e
co

d
e
r

T
il
e
 A

cc
u

m
u

la
to

r

(c) Tile Accumulators

EXP4

...

A
ct

iv
a
ti

o
n

S
ca

le
(4

b
)

Weight
Scale(4b)

++ ++

P
a
rt

ia
l
S
u

m
(3

2
b

)

<<<<

Tile Sum(16b)
Last Partial Sum(32b)

Fig. 5: Hardware Architecture of (a) OA-LAMA, (b) Tile, and (c) Tile Accumulator.

A three-level accumulation architecture enables hardware-friendly
dequantization, as detailed in Section IV-B. (4) Output Writeback:
Final outputs are encoded into OAMAG format through OAMAG
encoders and stored to off-chip memory.

B. Three-Level Accumulation Architecture

Traditional tensor/channel-wise quantization architectures [5], [34]
face inefficiencies when handling fine-grained group quantization due
to per-group scaling factors. To address this challenge, we propose a
three-level hierarchical accumulation architecture formalized as:

y =

s∑
(

l∑
(

g∑
(2e

w
t 2e

w
g w × 2e

x
t 2e

x
gx)))

= 2e
w
t 2e

x
t

s∑
(

l∑
(2e

w
g 2e

x
g

g∑
(w × x)))

=

s∑
(

l∑
(

g∑
(w × x) ≪ (ewg + exg))) ≪ (ewt + ext), (4)

where e
w/x
t denote tensor-level exponential scale for weight and

activation respectively, both of which are obtained offline through
calibration process, and e

w/x
g represent group-wise exponential scale.

The hardware dimensions comprise input channel slice number s
determined by systolic array capacity, systolic array spatial length l,
and group size g equivalent to tile spatial length. This dimensional
decomposition enforces the critical constraint Cin = s × l × g for
input channels, ensuring aligned mapping of group-quantized tensors
to the systolic array’s processing elements through three-level tiling.

First-Level Accumulation. As shown in Fig. 5(b), this stage
performs intra-group summation through the systolic array within
each tile. Following the OAMAG format defined in Section III-B with
group size g = 16, quantized data undergoes multiply-accumulate
(MAC) operations before being transferred to the tile accumulator. As
shown in Fig. 5(c), within the tile accumulator, the pregroup partial
sums are dequantized by applying bit-shifting operations based on
shared scale (ewg + exg).

Second-Level Accumulation. Illustrated in Fig. 5(a), this phase
propagates dequantized partial sums along the systolic array’s spatial
dimension. Each tile’s results flow through adjacent tile accumulators
column-wise, progressively combining outputs across the array’s
length l, ultimately feeding the unified sum to the accumulator.

Third-Level Accumulation. To address the limited physical di-
mensions of the systolic array, intermediate partial sums are tem-
porarily stored in the output buffer after processing each token batch.
The architecture subsequently reloads subsequent weight slices into
the array for new partial sum computation. During slice-wise itera-
tive processing, the output buffer simultaneously retrieves historical

W(4b)

(a) TIF PE (b) INT8 PE

++

W(4b) W(4b)

A
(4

b
)

A
(4

b
)

A
(4

b
)

P
ar

ti
a
l
S
u

m
(1

2
b

)

××

××

××

++

++
Last Partial Sum(12b)

7b

7b

7b 12b
8b

12b

W(8b)

A
(8

b
)

P
ar

ti
a
l
S
u

m
(1

6
b

)

××

Last Partial Sum(12b)

15b

++ 16b

Fig. 6: Microarchitecture of (a) TIF PE and (b) INT8 PE.

partial sums, performs accumulation with current results through the
accumulator, and writes back updated partial sums. This cyclic fetch-
merge-update mechanism enables full-channel computation flow.

C. Timing Balanced PE Design

Conventional mixed-precision architectures such as Oltron [5]
suffer from frequency limitations due to divergent timing delays
between high/low-precision processing elements (PEs), where the
maximum operating frequency is constrained by the critical path
of high-precision PEs. To fully exploit the timing slack of low-
precision PEs, we propose a timing-balanced PE design. As illustrated
in Fig. 5(b) and aligned with the OAMAG format (g = 16), each tile
row contains one INT8 PE and 15 INT4 PEs. We fuse three INT4 PEs
into a unified computational unit, termed the Triple-INT4 Fused (TIF)
PE, as shown in Fig. 6(a). Each TIF PE processes three parallel INT4
dot-product pairs through a two-stage adder tree to generate partial
sums. INT8 PE keeps the original design, as shown in Fig. 6(b).

For the TIF PE, the maximum partial sum value is bounded by
15 × 23+3 = 960 < 211 = 2048, making signed 12-bit partial sum
registers sufficient to prevent overflow. For the INT8 PE, as discussed
in the previous, the 4-bit left-shifting leads to a maximum partial sum
value of 960 × 24 + 214 = 31744 < 215 = 32768. Consequently,
the signed 16-bit partial sum register shown in Fig. 6(b) ensures
overflow-free computation while preserving numerical resolution.
This design reduces the tile output latency from 16 cycles to 6
cycles. Leveraging the single-cycle delay between tile accumulators
in our three-level accumulation architecture, a 256×256 systolic array
(l = 256, g = 16) achieves a total output latency of (6 + l

g
) = 22

cycles, significantly lower than the original l = 256 cycle baseline.
This architecture achieves hardware efficiency through fusing low-

precision PEs, enabling synchronous operation of heterogeneous PEs
at near-maximal frequency.

G0

G14

G15

Leading One
Detector

O
ff

-C
h

ip
 M

e
m

o
ry

···

G0q

G1q

G14q

G15q

···

16-input 32b
AND tree

<<<<

O
u

tp
u

t
B

u
ff

e
r

4b shared scale

Int8/Int4

Int4

Int3

Int3 P
a
ck

in
g

 U
n

it

G1G1

1

2

3

3

Fig. 7: OAMAG Encoder Design

D. Hardware-friendly OAMAG Decoding/Encoding Scheme

The memory-aligned nature of the OAMAG format enables an ex-
ceptionally streamlined decoder implementation. The decoding logic
reduces to simple bit-field extraction and concatenation operations,
requiring only basic shift-and-mask circuitry that enables efficient
decoding that directly matches tile inputs (15 × 4-bit + 1 × 8-bit)
and adds negligible area overhead (0.1% of total PE array area, as
shown in Table V).

For output processing, the accelerator employs a more sophis-
ticated encoder to compress systolic array results into OAMAG
format. As detailed in Fig. 7, this hardware-optimized implementation
refines the quantization principles defined in Eq. 2. While the original
formulation requires group-wise maximum magnitude detection, our
implementation employs hardware-optimized adaptations for prac-
tical deployment, as illustrated in Fig. 7. The encoding process
comprises three tightly coupled stages: ➊ Bitwise AND-Reduction:
A parallel AND-reduction tree computes shared most-significant-bit
(MSB) positions across all group elements, effectively approximating
the maximum magnitude identification required by Eq. 2 without
explicit magnitude comparisons. ➋ Exponential Scale Derivation:
The reduced bit pattern is processed by a single-cycle Leading One
Detector (LOD) to generate the group scaling exponent eg , aligning
with the exponential quantization scheme while eliminating complex
operations. ➌ Requantization and Packing: Raw int32 outputs
undergo right-shifting by eg bits followed by precision truncation
to the OAMAG specifications. The packing unit packs these values
with their shared scale into memory-aligned 64-bit blocks.

The fully pipelined OAMAG encoder design achieves sustained
throughput through bitwise AND reduction, LOD, and parallelized
shifters, significantly reducing hardware overhead and maintaining
single-cycle group processing latency.

V. EXPERIMENT

A. Methodology

Quantization Setup. To evaluate our proposed quantization frame-
work, we implement experiments on PyTorch. Our experiments com-
prehensively cover model families, including OPT (6.7B-13B) [31],
LLaMA (7B-65B) [35], and LLaMA-2 (7B-13B) [36]. We focus
on 4-bit weight-activation quantization, which currently represents
the accuracy loss limit for practical weight-activation quantization
scenarios. For accuracy evaluation, we adopt two standard metrics:
perplexity (lower is better) and zero-shot accuracy (higher is better).
Perplexity is measured on WikiText2 [37] datasets, while zero-shot
evaluation is conducted using lm-eval-harness [38] across multiple
tasks, including PIQA, ARC, BoolQ, HellaSwag, and WinoGrande.

Quantization Baselines. We compare OA-LAMA against the lead-
ing 4-bit weight-activation quantization methods, including OliVe [2],

Tender [4], Oltron [5], OPAL [1], and Atom [3]. In terms of
weight quantization, OAMAG format employs the same quantization
techniques as activation. To demonstrate the superiority of OAMAG
format and outlier handling approach, OA-LAMA does not adopt any
other advanced weight quantization error reduction techniques such
as GPTQ [17], AWQ [13], or OWQ [23]. Oltron and Atom utilize
GPTQ for weight quantization, while OPAL employs OWQ [23] for
weight quantization. OWQ achieves lossless accuracy performance
that is even better than GPTQ on weight-only quantization. For outlier
channel selection, we employ 128 randomly sampled sentences from
WikiText2 [37] as calibration data, consistent with Oltron, OPAL,
and Atom. Regarding the reordering approach, we adopt the method
similar to Atom and Oltron by fusing the reordering operation into
the previous layer through kernel fusion. In contrast, Tender stores
channel indices in an index buffer due to its row-chunking technique.

Quantization Configuration. Regarding the quantization bit-width
calculation, since different works adopt varying computation base-
lines (particularly when incorporating outlier-preserving schemes and
group-wise quantization), we propose a unified bit-width measuring
metric defined as:

bitavg =
bitnormal + bitoutlier + bitscale

Ngroup
, (5)

where bitnormal ,bitoutlier , and bitscale respectively denote the total
bitwidth allocated for normal values, outliers, and scale factors per
group, with Ngroup representing the number of elements per group.
Notably, Atom employs FP16 scales with 128-element grouping
while maintaining INT8 quantization for outlier channels (e.g., 128
out of 4096), yielding bitavg = 4.25. OPAL utilizes 4-bit scales
with 128-element grouping, preserving BF16 precision for 0.25%
of weight channels and every 4 out of 128 activation grouping
elements, resulting in bitavg = W4.06A4.41/7.31. OPAL also
employs an inter-layer mixed-precision quantization scheme (A4/7),
where layers following layer normalization (LN) in both Attention
and Feed-Forward Network (FFN) components are quantized to 4
bits, while other layers in them are quantized to 7 bits. Oltron does
not employ group-wise quantization. In the original implementation,
two quantization results with bitavg of 4.01 and 4.1 are reported
based on different outlier-normal value ratios. Additionally, OAMAG
format maintains bitavg of 4 through its innovative scale and outlier
extra bit-width fusing technique. For a fair comparison, OAMAG
format provides two distinct results demonstrating without fusing: ➊

without fusing of scale (bitavg = 4.25) and ➋ all groups utilizing
outlier preservation without fusing of both (bitavg = 4.5), as will
be presented in Table III. For Oltron and OPAL, we report only the
results documented in their publications as their code is not available.

OA-LAMA Implementation. The described OA-LAMA architec-
ture, comprising the systolic array and EnDec modules in Section IV,
is implemented in Verilog RTL. The design is synthesized using
Synopsys Design Compiler [39] under TSMC 28nm technology node
at 1 GHz operating frequency to evaluate performance, power, and
area (PPA) metrics. On-chip buffer characteristics are analyzed with
CACTI [40] under identical process conditions. A cycle-accurate
simulator derived from DNNWeaver [41] is employed for archi-
tectural performance and energy efficiency evaluation. To ensure
equitable comparison, competing baseline designs are scaled to the
same technology node using DeepScaleTool [42].

Accelerator Baselines. The OA-LAMA is benchmarked against
four mixed-precision accelerators: OPAL [1], Oltorn [5], OliVe [2],
and Tender [4]. Each baseline’s architecture, including decoders,
computation units, and encoders, is synthesized under equivalent die
area constraints to ensure iso-area configurations. All designs adopt

TABLE III: Perplexity Results of Quantized Models on WikiText2 Dataset

Method
Bit-Width

OPT-6.7B OPT-13B Llama-7B Llama-13B Llama-30B Llama-65B Llama-2-7B Llama-2-13B
W A KV

FP16 16 16 16 10.86 10.12 5.68 5.09 4.01 3.52 5.47 4.88
OliVe 4 4 16 39.18 65.42 32.15 15.64 13.59 12.85 44.07 50.28
Tender 4 4 4 13.56 16.43 23.85 13.68 12.07 8.85 36.47 55.08
Oltron 4 4.01 16 12.69 11.49 36.47 144.08 439.25 15.85 - -
Oltron 4 4.1 16 12.00 11.35 11.67 8.02 6.68 5.82 - -

OAMAG 4 4 4 11.69 10.99 6.47 5.60 4.74 4.12 6.27 5.40
Atom 4.25 4.25 4.25 11.23 10.43 6.16 5.46 4.54 3.89 6.03 5.27

OAMAG∗ 4.25 4.25 4.25 11.28 10.51 6.18 5.37 4.46 3.87 5.93 5.18
OPAL 4.06 4.41/7.31 16 10.98 10.31 - - - - 6.49 5.30

OAMAG† 4.5 4.5 16/4.5 11.06/11.16 10.30/10.43 6.02/6.03 5.31/5.32 4.38/4.38 3.79 5.81/5.82 5.11/5.11
∗ In OAMAG, we achieve bitavg = 4.25 when the bit-width of the group-wise scale is not fused into every group’s bit-width.
† In OAMAG, we achieve bitavg = 4.5 when all groups utilizing outlier preservation, and both the bit-width of the group-wise scale and outlier’s extra bit-width

are not fused into every group’s bit-width.

TABLE IV: Zero-Shot Results on Multiple Benchmarks (PQ: PIQA, Ae: ARC-e, Ac: ARC-c, BQ: BoolQ, HS: HellaSwag, WG: Winogrande)

Method
Bit-Width OPT-6.7B Llama-7B Llama-2-7B

W/A/KV PQ/Ae/Ac/BQ/HS/WG Average PQ/Ae/Ac/BQ/HS/WG Average PQ/Ae/Ac/BQ/HS/WG Average

FP16 16/16/16 76.55/60.06/34.64/66.06/67.21/65.27 61.63 77.37/52.53/41.38/73.12/72.99/66.85 64.04 76.93/53.53/40.61/71.16/72.94/67.17 63.72

Tender 4/4/4 74.32/56.82/33.79/58.93/64.54/61.80 58.37 69.70/58.50/36.26/69.30/57.30/59.04 58.35 58.98/49.03/30.46/64.28/46.26/53.67 50.45

Atom 4.25/4.25/4.25 48.80/26.73/24.91/37.83/25.26/49.01 35.42 76.28/52.10/38.99/69.79/69.81/63.69 61.78 74.76/50.51/38.91/69.36/69.37/64.48 61.23

OPAL 4.06/(4.41/7.31)/16 - - - - 75.24/-/37.80/-/-/- -

OAMAG 4/4/4 74.37/56.73/33.28/64.13/63.84/62.51 59.14 76.01/50.00/39.51/73.00/69.89/62.12 61.76 76.06/51.47/38.23/68.35/70.16/63.14 61.24

weight-stationary systolic arrays with the same global buffer size and
memory bandwidth to maximize computational utilization. Under iso-
area constraints, output dimension is fixed at 64 to standardize the
number of accumulators and encoders across each design. For Oltorn
and OliVe, vector processing units (VPUs) functionally equivalent
to Tender’s implementationn are integrated as encoders to perform
requantization operations on systolic array outputs. OPAL’s native
layer-wise 4/7-bit mixed-precision strategy is constrained to uniform
4-bit operations for equitable comparison, with non-essential func-
tional units (log2-based softmax units) removed to isolate linear layer
computation capabilities.

B. Quantization Performance Results

Perplexity. Table III shows perplexity results under bitavg =
4/4.25/4.5, three bit-width configuration settings. At bitavg = 4
- our targeted bit-width, OAMAG achieves state-of-the-art quanti-
zation results across all models as the only work supporting KV4
quantization. It demonstrates particularly outstanding performance
on Llama-series models, outperforming the SOTA work Oltron
(W4.125A4.1KV16) by an average of 62.07% in perplexity. For a
fair comparison, at bitavg = 4.25, compared with Atom, OAMAG
shows slightly inferior results only on the OPT suite and Llama-7B
but achieves better performance on all other Llama models, with an
average improvement of 10.16%. At bitavg = 4.5, we present two
variants of OAMAG: with KV cache unquantized and quantized to
4.5 bits to compare with OPAL. OAMAG (W4.5A4.5KV4.5) presents
the best quantization results with an average of 5.56% perplexity loss.
OPAL surpasses other works including ours on OPT models due to its
particularly higher bit-width but shows limited effectiveness on Llama
models - it even underperforms OAMAG (W4A4KV4) on Llama-
2-7B. Notably, OAMAG shows superior generality across different
models, even outperforms OPAL under KV16 on OPT-13B.

Zero Shot Accuracy. Table IV compares the zero-shot accuracy
of OAMAG against Tender, Atom, and OPAL across six benchmark
tasks. Olive and Oltron are omitted as they lack zero-shot evaluation
capability. As the only framework supporting full bitavg = 4 quan-
tization (W4A4KV4), OAMAG achieves the best accuracy on both

TABLE V: Area of OA-LAMA Accelerator and Baseline Accelerator

Arch.
Core

Other
Component Number Area

OA-LAMA

Decoder(38.98µm2) 8

0.482mm2

Accumlation Units∗:

#64, 0.008mm2

VPUs†:

#64, 0.069mm2

Buffer:

128KB, 0.55mm2

TIF PE(303.24µm2) 1536

INT8 PE(296.18µm2) 256

Tile Accumulator(320.71µm2) 256

Encoder†(464.69µm2) 4

OPAL

Data Distributor(2996.09µm2) 27

0.481mm2
Compute Lane∗(14370.53µm2) 27

FP Adder Tree(1453.22µm2) 4

Quantizer†(5948.00µm2) 1

Tender 4bit PE(297.02µm2) 1792 0.480mm2

Oltron

Decoder(44.69µm2) 2

0.483mm2Efficient PE(163.30µm2) 2624

Flexible PE(296.18µm2) 256

OliVe
Decoder(173.05µm2) 85

0.479mm2

4bit PE(385.56µm2) 1344
∗ All accelerators are equipped with 64 accumulation units except OPAL, which imple-

ments accumulation internally within compute lanes.
† All designs incorporated 64 VPUs except OA-LAMA and OPAL, which feature

functionally equivalent components respectively.

OPT and Llama-2 models at the lowest bitwidth, while maintaining
near-competitive performance on Llama model (just 0.02 loss behind
Atom). Additionally, OAMAG demonstrates remarkable robustness,
showing a maximum of 4% accuracy degradation across all models.
In contrast, we observe significant limitations in other methods: Atom
suffers nearly 43% accuracy drop on OPT model while Tender shows
21% degradation on Llama-2 model.

C. Accelerator Implementation Results

Area. Table V presents the area breakdown and component con-
figurations of OA-LAMA and baseline accelerators, all normalized
to 0.48mm2 under TSMC 28nm technology. OPAL employs data
distributors and compute lanes for outlier-aware quantization, with
each lane supporting 128 4-bit and 4 BF16 MAC operations. To

0.32 0.39 0.47

0.76

0
0.2
0.4
0.6
0.8

1
N

or
m

al
iz

ed
 C

yc
le

OA-LAMA OPAL Oltron Tender OliVe

(a) Normalized Cycle

0.40
0.55 0.55

0.80

0
0.2
0.4
0.6
0.8
1

O
A
-L
A
M
A

O
PA

L
O
ltr
on

Te
nd
er

O
liV

e
O
A
-L
A
M
A

O
PA

L
O
ltr
on

Te
nd
er

O
liV

e
O
A
-L
A
M
A

O
PA

L
O
ltr
on

Te
nd
er

O
liV

e
O
A
-L
A
M
A

O
PA

L
O
ltr
on

Te
nd
er

O
liV

e
O
A
-L
A
M
A

O
PA

L
O
ltr
on

Te
nd
er

O
liV

e

OPT_1.3B OPT_6.7B LLaMA_7B LLaMA_30B Geomean

N
or
m
al
iz
ed

En
er
gy

Static DRAM Buffer Core

(b) Normalized Energy

Fig. 8: Comparison on performance (a) and energy efficiency (b)
between OA-LAMA and other baselines

ensure iso-area configuration, OPAL is configured with 27 compute
lanes. Given the original design where 8 compute lanes share one
FP Adder Tree, we provisionally allocate 4 FP Adder Trees for
this implementation. Tender’s architecture implements 28×64 PEs,
while the original 7:1 ratio between Efficient PEs and Flexible PEs
in Oltron is adapted to a (41:4)×64 configuration under iso-area
constraints to maintain hardware resource parity. OliVe’s 4-bit PEs
demonstrate 21×64 PE allocation due to the large circuit footprint
of E4M4 PEs in the original paper. The VPU is implemented as
12-stage pipelined dividers for requantization. Experimental results
demonstrate that the TIF PE achieves comparable PPA metrics to
INT8 PE while outperforming other baseline accelerators, with OA-
LAMA’s encoding logic introducing negligible area overhead (<0.3%
of total area) compared to baseline implementations.

Performance. Fig. 8(a) illustrates the normalized cycle of OA-
LAMA and baseline accelerators across varying models. OliVe ex-
hibits the worst latency due to its E4M4 PEs designed to accommo-
date outlier magnitudes, while Tender incurs latency penalties from
shifted accumulation results, both requiring extended accumulator bit-
widths, which incurs severe hardware overhead. Oltron benefits from
area-efficient PEs but suffers from significant requantization overhead
due to FP16 scaling factors. OPAL’s exponential scaling method
minimizes requantization overhead, but its BF16 outliers introduce
memory bandwidth and computational unit overhead. In contrast, OA-
LAMA achieves superior throughput through memory-aligned group
quantization and timing-balanced PE design, demonstrating 3.09×,
2.34×, 1.46×, and 1.21× speedup over OliVe, Tender, Oltron, and
OPAL, respectively, while maintaining higher accuracy.

Energy. Fig. 8(b) compares normalized energy consumption across
cores, global buffers, and DRAM. The weight-stationary architecture
induces substantial buffer access energy across all designs. OliVe
and Tender exhibit the highest energy costs due to wide bit-width
accumulator overhead, while OPAL incurs non-negligible memory
access overhead from additional outlier and scaling factor handling,
resulting in energy consumption comparable to Oltron. By contrast,
OA-LAMA’s memory-aligned group format minimizes energy costs,
achieving 2.47×, 2.12×, 1.36×, and 1.35× energy savings versus
OliVe, Tender, Oltron, and OPAL respectively. This efficiency stems
from coordinated bit-width reduction in memory transactions (41%
fewer DRAM access energy compared to OPAL) and elimination of
floating-point conversion logic.

TABLE VI: Ablation Study on Different Quantization Techniques
used in OA-LAMA on WikiText2 PPL↓

Quantization Method OPT-6.7B Llama-7B

FP16 (baseline) 10.86 5.68

W4A4 g128 FP16 scale 13.12 6.76
W4A4 g16 exponent scale 13.37 6.38
+ Keeping each group’s outlier in INT8 11.06 (2.31↓) 6.02 (0.36↓)

W4A4 g16 fused expoenent scale/ outlier extra bit-width
Normal group only (int4/3) 13.87 6.74
Outlier group only (int8, int4/3) 11.68 6.57
Mixed-group 11.37 6.47
+ KV Cache only 11.69 (0.32↑) 6.47 (0↑)

D. Ablation Study

We measure the impact of the techniques involved in OA-LAMA
on model accuracy, using perplexity as the metric, with results
shown in Table VI. First, we compare the conventional g128 FP16
scaling and the g16 exponent scaling. The results show that g16
exponent scaling outperforms g128 FP16 scaling on Llama-7B but
still lags behind on OPT-6.7B. However, when outliers in each group
are quantized to INT8, the method significantly outperforms FP16
method on both models. Next, we incorporate the package-level
memory alignment considerations to achieve true W4A4 quantization.
Accounting for outlier groups yields substantially lower perplexity
than ignoring them, and further improvements are achieved by intro-
ducing mixed grouping. When applying KV cache quantization, OPT-
6.7B exhibits a 0.32 increase in perplexity, while Llama-7B shows
no measurable increases. This demonstrates OA-LAMA’s advantage
in KV cache quantization.

VI. CONCLUSIONS

This work addresses the critical challenge of achieving both mem-
ory alignment and model accuracy in quantized LLM deployment,
particularly when handling non-uniform outlier distributions that dis-
rupt conventional quantization approaches. We present OA-LAMA,
a co-designed framework that resolves this dual challenge through
three key innovations: (1) the memory-aligned OAMAG format that
maintains DRAM-compatible access patterns while preserving outlier
precision, (2) adaptive group allocation for inter-layer variance, and
(3) a three-level accumulation architecture with timing-balanced PEs
that supports efficient mixed-precision computation. Experimental
results demonstrate OA-LAMA’s superior accuracy over 4-bit quanti-
zation methods while delivering 1.21-3.09× speedup and 1.35-2.47×
energy efficiency gains compared to state-of-the-art accelerators.
These advancements establish new Pareto frontiers in accuracy-
efficiency optimization while fully maintaining memory alignment
across all hierarchy levels, enabling more practical deployment of
large language models.

ACKNOWLEDGEMENT

This work is supported by National Key Research and Develop-
ment Program of China (No. 2024YFB4504200), the Guangzhou-
HKUST(GZ) Joint Funding Program (No. 2025A03J3568), and partly
by the National Science Foundation of China Fund (No. U24B20151)
and Shenzhen Bureau of Science and Technology Research Fund (No.
KJZD20240903102708012). We also thank the AMD Heterogeneous
Accelerated Compute Cluster (HACC) Program at NUS for providing
access to hardware resources.

REFERENCES

[1] J. Koo, D. Park, S. Jung, and J. Kung, “Opal: Outlier-preserved
microscaling quantization accelerator for generative large language
models,” in Proceedings of the 61st ACM/IEEE Design Automation
Conference, 2024, pp. 1–6.

[2] C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y. Liu, M. Guo,
and Y. Zhu, “Olive: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture. IEEE,
2023, pp. 1–15.

[3] Y. Zhao, C.-Y. Lin, K. Zhu, Z. Ye, L. Chen, S. Zheng, L. Ceze,
A. Krishnamurthy, T. Chen, and B. Kasikci, “Atom: Low-bit quantization
for efficient and accurate llm serving,” Proceedings of Machine Learning
and Systems, vol. 6, pp. 196–209, 2024.

[4] J. Lee, W. Lee, and J. Sim, “Tender: Accelerating large language models
via tensor decomposition and runtime requantization,” arXiv preprint
arXiv:2406.12930, 2024.

[5] C. Xue, C. Zhang, X. Jiang, Z. Gao, Y. Lin, and G. Sun, “Oltron:
Algorithm-hardware co-design for outlier-aware quantization of llms
with inter-/intra-layer adaptation,” in Proceedings of the 61st ACM/IEEE
Design Automation Conference, 2024, pp. 1–6.

[6] B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal et al., “Language models are
few-shot learners,” arXiv preprint arXiv:2005.14165, vol. 1, p. 3, 2020.

[7] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[8] Microsoft, “Github copilot,” https://github.com/features/copilot, 2023.
[9] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,

P. Wang, X. Bi et al., “Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning,” arXiv preprint arXiv:2501.12948,
2025.

[10] N. Corporation, “Nvidia blackwell b200 gpu,” https://www.nvidia.com/
en-us/data-center/dgx-b200/, 2024.

[11] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
arXiv preprint arXiv:2106.08295, 2021.

[12] S. Li, X. Ning, L. Wang, T. Liu, X. Shi, S. Yan, G. Dai, H. Yang, and
Y. Wang, “Evaluating quantized large language models,” arXiv preprint
arXiv:2402.18158, 2024.

[13] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao,
X. Dang, C. Gan, and S. Han, “Awq: Activation-aware weight quanti-
zation for on-device llm compression and acceleration,” Proceedings of
Machine Learning and Systems, vol. 6, pp. 87–100, 2024.

[14] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quantization for large
language models,” in International Conference on Machine Learning.
PMLR, 2023, pp. 38 087–38 099.

[15] Y. Lin, H. Tang, S. Yang, Z. Zhang, G. Xiao, C. Gan, and S. Han,
“Qserve: W4a8kv4 quantization and system co-design for efficient llm
serving,” arXiv preprint arXiv:2405.04532, 2024.

[16] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “Gobo: Quan-
tizing attention-based nlp models for low latency and energy efficient
inference,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 811–824.

[17] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” arXiv
preprint arXiv:2210.17323, 2022.

[18] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 ():
8-bit matrix multiplication for transformers at scale,” Advances in Neural
Information Processing Systems, vol. 35, pp. 30 318–30 332, 2022.

[19] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He,
“Zeroquant: Efficient and affordable post-training quantization for large-
scale transformers,” Advances in Neural Information Processing Systems,
vol. 35, pp. 27 168–27 183, 2022.

[20] S. Ashkboos, I. Markov, E. Frantar, T. Zhong, X. Wang, J. Ren,
T. Hoefler, and D. Alistarh, “Quik: Towards end-to-end 4-bit inference
on generative large language models,” arXiv preprint arXiv:2310.09259,
2023.

[21] C. Guo, C. Zhang, J. Leng, Z. Liu, F. Yang, Y. Liu, M. Guo, and
Y. Zhu, “Ant: Exploiting adaptive numerical data type for low-bit deep
neural network quantization,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2022, pp. 1414–
1433.

[22] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[23] C. Lee, J. Jin, T. Kim, H. Kim, and E. Park, “Owq: Outlier-aware
weight quantization for efficient fine-tuning and inference of large
language models,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 12, 2024, pp. 13 355–13 364.

[24] Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, Z. Zhou, C. Xue, B. Wu, Z. Li,
Q. Gu, Y. J. Lee et al., “Llm inference unveiled: Survey and roofline
model insights,” arXiv preprint arXiv:2402.16363, 2024.

[25] C. Hooper, S. Kim, H. Mohammadzadeh, M. W. Mahoney, S. Shao,
K. Keutzer, and A. Gholami, “Kvquant: Towards 10 million context
length llm inference with kv cache quantization,” Advances in Neural
Information Processing Systems, vol. 37, pp. 1270–1303, 2024.

[26] Z. Liu, J. Yuan, H. Jin, S. Zhong, Z. Xu, V. Braverman, B. Chen, and
X. Hu, “Kivi: A tuning-free asymmetric 2bit quantization for kv cache,”
arXiv preprint arXiv:2402.02750, 2024.

[27] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[28] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network ac-
celerator based on outlier-aware low-precision computation,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2018, pp. 688–698.

[29] N. G. Bita Darvish Rouhani, A. M. Tom Savell, M. Z. Kyung-Nam Han,
J. K. Ritchie amd Hall, Y. Y. Eric Chung, R. W. Michael Schulte,
N. S. Ian Bratt, J. B. Jelena Milanovic, M. C. Pradeep Dubey, A. R.
Alexander Heinecke, S. D. Martin Langhammer, M. S. Maxim Naumov,
Paulius Micikevicius, and C. Verrilli, “Ocp microscaling (mx) specifica-
tion,” Open Compute Project, 2023.

[30] B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi, S. Deng,
D. Choudhary, M. Cornea, E. Dellinger, K. Denolf et al., “Microscaling
data formats for deep learning,” arXiv preprint arXiv:2310.10537, 2023.

[31] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[32] Z. Chen, B. XIE, J. Li, and C. Shen, “Channel-wise mixed-
precision quantization for large language models,” arXiv preprint
arXiv:2410.13056, 2024.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

[34] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal et al.,
“In-datacenter performance analysis of a tensor processing unit,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 1–12.

[35] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[36] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[37] W. contributors, “68-95-99.7 rule - wikipedia,” in The Free Encyclope-
dia. [Online], 2022.

[38] L. Gao, J. Tow, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding,
J. Hsu, K. McDonell, N. Muennighoff, J. Phang, L. Reynolds, E. Tang,
A. Thite, B. Wang, K. Wang, and A. Zou, “A framework for few-shot
language model evaluation,” Sep. 2021, zenodo.

[39] P. Kurup and T. Abbasi, Logic Synthesis Using Synopsys, 2nd ed.
Springer Publishing Company, Incorporated, 2011.

[40] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Cacti 6.0: A
tool to model large caches. hp laboratories,” Tech. Rep. HPL-2009-85,
2009.

[41] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas.” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). Ieee, 2016, pp. 1–12.

[42] S. Sarangi and B. Baas, “Deepscaletool: A tool for the accurate esti-
mation of technology scaling in the deep-submicron era.” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). Ieee, 2021,
pp. 1–5.

https://github.com/features/copilot
https://www.nvidia.com/en-us/data-center/dgx-b200/
https://www.nvidia.com/en-us/data-center/dgx-b200/

	Introduction
	Background and Motivation
	Quantization for LLMs
	Challenges of Outlier-aware Quantization
	Motivation for OA-LAMA

	Outlier-Adaptive Mixed-Precision Quantization
	Outlier-Adaptive Memory-Aligned Group (OAMAG) Format
	Group-wise Outlier Scattering Method
	Distribution-Aware Group Allocation Strategy

	Hardware Architecture of OA-LAMA
	Overview of OA-LAMA
	Three-Level Accumulation Architecture
	Timing Balanced PE Design
	Hardware-friendly OAMAG Decoding/Encoding Scheme

	Experiment
	Methodology
	Quantization Performance Results
	Accelerator Implementation Results
	Ablation Study

	Conclusions
	References

