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Abstract-Breadth First Search (BFS) is a key building block
of graph processing and there have been considerable efforts
devoted to accelerating BFS on FPGAs for both performance and
energy efficiency. Prior work typically built the BFS accelerator
through handcrafted circuit design using hardware description
language (HDL). Despite the relatively good performance, the
HDL based design leads to extremely low design productivity, and
incurs high portability and maintenance cost. While high level
synthesis (HLS) tools make it convenient to create a functionally
correct BFS accelerator, the performance can be much lower the
handcrafted design with HDL.

To obtain both the near handcrafted design performance and
better software-like features such as portability and maintenance,
we propose OBFS, an OpenCL based BFS accelerator on soft
ware programmable FPGAs. With the observation that OpenCL
based FPGA design is rather inefficient on irregular memory
accesses, we propose approaches including data alignment, graph
reordering and batching to ensure coalesced memory accesses. In
addition, we take advantage of the on-chip buffer to mitigate the
inefficient random DDR accesses. Finally, we shift the random
level update in BFS out from the main processing pipeline
and have it overlapped with the following BFS processing task.
According to the experiments, OBFS achieves 9.5X and 5.5X
performance speedup on average compared to a vertex-centric
implementation and an edge-centric implementation respectively
on Intel Harp-v2. When compared to prior handcrafted designs,
it achieves comparable or even better performance.

I. INTRODUCTION

Previous works have shown that BFS accelerators on FPGAs
can provide competitive performance and superior energy
efficiency given comparable memory bandwidth (e.g., [6],
[10], [12]). However, they typically develop and optimize BFS
with dedicated circuits using hardware description language
(HDL). The HDL based designs allow fine-grained control on
resource consumption and are beneficial to the performance,
but they usually take long time for development, upgrade,
maintenance and for porting to a different FPGA device, which
are all important concerns from the perspective of system
designers.

Because of these design productivity problems, high-level
synthesis (HLS) tools advance rapidly and become attractive
recently. They are increasingly adopted in both industry and
academia for fast prototyping and application acceleration [9],
[11]. Although HLS tools improve the design productivity,
the performance of HLS based designs may still be far from
that of the corresponding handcrafted designs particularly for
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irregular applications [14], [7]. For instance, the authors in
[14] showed that HLS based design of DNA sequencing can
be 27X-80X slower than their handcrafted design. BFS is a
typical application with inherent irregular memory accesses,
and the performance of BFS reference implementation in [7]
is much lower than that of the RTL implementations [5], [6].

To address the severe memory access bottleneck in BFS,
we investigate aggressive memory access optimizations for
OpenCL-based BFS on FPGAs. Firstly, we propose to reorder
the graph layout and make the data aligned and batched. With
the graph reordering, batching, and data alignment, a great
number of memory accesses can be coalesced. Meanwhile,
we assign the continuous data to different memory banks
such that they can be accessed and processed in parallel
without conflicts. According to the experiments, the proposed
OpenCL-based BFS accelerator named OBFS achieves 9.5X
and 5.5X performance speedup when compared to a vertex
centric implementation [7] and an edge-centric implementation
[4] in OpenCL respectively. Moreover, OBFS achieves compa
rable performance to many handcrafted designs [5], [6], [16].
The code is open-sourced on github'.

II. PIPELINED OPENCL BFS OPTIMIZATION

In this work, we assume the graph is stored with compressed
sparse row (CSR) format which includes a row pointer array
(RPA) and a column index array (CIA). RPA contains the
starting index of each vertex in CIA array while CIA consists
of the incoming/outgoing neighbors.

To achieve high-throughput BFS, we develop a pipelined
design for BFS, which enables direct on-chip communication
between different pipeline stages without going through the
shared DRAM. Essentially, BFS is a nested loop and each
layer of BFS loop can be converted to a pipeline stage. The
throughput of the pipeline is determined by the inner most loop
kernel initially. A natural optimization is to duplicate the inner
most loop kernel spatially. However, it is challenging to fulfill
the massive parallel memory requests when they are issued
directly. Therefore, BFS requires both pipelining optimizations
and memory access optimizations.

1https://github.comILiu-Chenglbfs_with.JnteLOpenCL.git



A. Pipelining

Typically, deep fine-grained pipelining can be beneficial to
the processing efficiency and implementation frequency on
FPGAs. Thus, we split the inner most loop and divide BFS
into five pipeline stages. The pseudo code of the BFS with
fine-grained pipelining is shown in Algorithm 1. Channels
implemented with FlFOs can be used to connect the differ
ent pipeline stages. With channels, stages form a producer
consumer pipeline. With the fine-grained pipelining, there are
no direct dependent memory accesses in each pipeline stage.
In Stage 1, it reads frontier vertices from memory. In Stage
2, RPA of the frontier vertices are read to determine their
locations in CIA. In Stage 3, it reads CIA array to get the
indices of the outgoing neighbors. In Stage 4, each neighbor
is inspected and unvisited neighbors are considered as frontier
in the next BFS. In Stage 5, the new frontier vertices are
streamed to memory and the level of the frontier vertices is
updated.

The five-stage pipeline implementation is used as the base
line for further optimizations. In the following, we develop
a series of memory access optimizations to improve the
efficiency of the baseline implementation.

Algorithm 1 Pseudo code of pipelined BPS algorithm
I: procedure BPS
2: level[v] +- -1 where v E V
3: level[vB] +- 0
4: current_level +- 0
5: frontier +- VB
6: l+-O
7: while !frontier. emptyO do
8: traverseFrontierO I/Stage 1
9: inspectFrontierRPAO I/Stage 2

10: inspectFrontierCIAO I/Stage 3
11: checkNgbVisitStatusO I/Stage 4
12: updateFrontier(l) I/Stage 5
13: exchange frontier and nexCfrontier
14: 1+-1 + 1
15: procedure traverseFrontier
16: for v E frontier do
17: frontier_channel.write(v)
18: procedure inspectFrontierRPA
19: v +- frontierJhannel.readO
20: rpa.start +- RPA[v]
21: rpa.end +- RPA[v + 1]
22: rpa_channel.write(rpa)
23: procedure inspectFrontierCIA
24: rpa -- rpa_channel.readO
25: for idx +- rpa.start to rpa.end do
26: v_out +- CIA[idx]
27: ngb_channel.write(v_out)
28: procedure checkNgbV isitStatus
29: v_out +- ngb_channel.readO
30: if (level[v_out] == -1) then
31: nexCfrontier_channel.write(v_out)
32: level[v_out] +- 1+1
33: procedure updateFrontier
34: v_out +- next_frontier_channel.readO
35: nexCfrontier.write(v_out)

B. Memory coalescing

In BFS, there are many inefficient memory accesses, mainly
caused by small data width, short burst accesses, and false
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dependent memory accesses. To address those issues, we try to
coalesce the memory accesses with the following approaches.

First, we have both RPA and CIA arrays aligned. For the
RPA array, it is changed to the new sequence (RPA[O],
RPA[I] - RPA[Oj), (RPA[I] , RPA[2] - RPA[Ij), ...,
(RPA[i] , RPA[i + 1] - RPA[ij), ... where i is the vertex
index. In addition, the two 32-bit random RPA read operations
are combined to a single memory read aligned to 64-bit.
For CIA array, it is typically read from CIA[RPA[i]] to
CIA[RPA [i+ 1] sequentially when traversing the neighbors
of vertex i. To ensure aligned neighbor traverse, we have both
ends aligned to B x 32-bit where B refers to the number
of batched data. Basically, B vertices batched together can
be read each time in inspectFrontierCI AO. Additional
padding i.e. '-1' may need to be added to ensure that CIA
range of each vertex can be fully divided by B. With the data
alignment and batching, the overall memory access efficiency
improves despite the additional padding overhead.

Second, B neighbors must be processed in parallel in
checkNgbVisitStatusO to guarantee balanced pipelining,
and thus B also determines the number of parallel process
ing units. As B neighbors are independent, it is natural to
distribute them to the B processing units. Nevertheless, B
parallel processing units of checkNgbVisitStatusO may still
be stalled due to the memory conflicts when the B data to be
accessed are located in the same memory bank.

Third, we reorder the outgoing neighbors of each vertex to
ensure no conflicts in the B parallel update units. Algorithm
2 details the reordering together with the data alignment. The
original CSR graph consists of RPA array and CIA array and
the reordered new CSR graph is stored in newRPA array and
newCI A array respectively. The reordering roughly involves
two steps. 1) Neighbors of each vertex are assigned to B
queues based on the modulo result of neighbor index and B.
2) We get one data from each queue to construct a batch of
B data. Repeat the process until all queues are empty. All the
batched data are put into newCI A array. '-1' will be used as
padding to construct the batched data when the corresponding
queue is empty earlier. newRPA is updated accordingly to
ensure the CSR storage format.

With the data alignment, graph batching and re
ordering, memory accesses in inspectFrontierRPAO,
inspectFrontierCI AO and checkNgbVisitStatusO are
coalesced for parallel processing. Note that graph reordering
and data alignment are considered as graph pre-processing,
which are performed on the CPU.
C. On-chip bitmap buffering

After the graph reordering and data alignment, there are
still many random accesses in checkNgbV isitStatusO, i.e.,
level [v_out]. Although B independent memory access re
quests to DRAM can be issued in parallel, the random memory
accesses remain inefficient. Instead of using level to determine
the visiting status, we utilize bitmap to represent the visiting
status directly, which is also used in some of the previous
BFS accelerator designs [7]. Each vertex needs only one bit
to determine whether it is visited. The latest FPGAs with up



Algorithm 2 Data alignment and reordering of a CSR graph

I: queue[B]
2: eid +- 0
3: for v E V do
4: newRPA[2v] +- eid
5: for (i +- RPA[v] to RPA[v + 1]) do
6: j +- mod(CIA[i], B)
7: queue[j].write(CIA[i])
8: D+-O
9: while (there are still non-empty queues in queue[B]) do

10: D +-D+ 1
11: for (i +- 0 to B) do
12: eid +- eid + 1
13: if (!queue[i].emptyO) then
14: newCIA[eid] +- queue[i].readO
15: else
16: newCIA[eid] +- -1
17: newRPA[2v + 1] +- D x B

newRPA f-'--1--"-1~

newCM
l===;~~:::=:::::J

Fig. 1: CSR layout after the data alignment, graphreordering and batching

to 500Mb on-chip buffer can accommodate graphs with 500M
vertices in theory, which fulfills the requirements of many re
alistic graphs such as twitter20l0 (42M vertices). Meanwhile,
we need to split the visiting status bitmap into B banks to
fit the parallel processing of checkNgbV isit8tatusO. The
visiting status of a vertex v will be put into the ith memory
bank where i = mod(id, B). The bitmap layout is consistent
with the graph reordering and batching.

D. Level update shifting

To ensure level query of any vertex in the graph after BFS,
we need to update level information to array level[]. Since the
level update i.e. level [c_out] +--1+1 includes massive random
writes to DRAM, it is slow and can affect the main BFS
pipelining when it is put in the inspedNgbVisit8tatusO.
Nevertheless, we notice that it does not affect the next BFS
iteration thanks to the on-chip bitmap. Since the frontier ver
tices are already stored in memory in updateb'roniieri], we
can always perform the level update based on just the stored
frontier. Therefore, we can safely shift level update processing
out from the checkNgbVisit8tatusO and simplify the main
BFS pipelining. Meanwhile, we can postpone the level update
without blocking the BFS processing. Therefore, we separate
the level update from the main BFS pipeline and overlap
it with the following BFS processing task (consider a task
implemented by multiple BFS operations). Alternatively, it can
also be processed on the attached host Cpu.
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TABLE I: GraphBenchmark

Name # of vertex # of edge Type

YouTube (YT) 1,157,828 2,987,624 Undirected
Live Journal (LJ) 4,847,571 68,993,773 Directed

Pokec (PK) 1,632,804 30,622,564 Directed
R19 524,288 16,777,216 Directed
R21 2,097,152 67,108,864 Directed

TABLE II: Performance comparison to existing OpenCL basedBFS

Benchmark YT LJ PK R19 R21

OBFS 79.4 475.7 557.8 787.7 934.2

Spector 12.01 64
Speedup 6.6X 12.3X

Work[4] 25.9 63.9 81.3 183.5 157.8
Speedup 3.1X 7.4X 6.8X 4.3X 5.9X

III. EXPERIMENTS

In this section, we measure the overall performance of the
optimized OpenCL-based BFS accelerator on Intel Harp-v2
[8] with a set of representative graphs. Then we have an
end-to-end comparison to the existing OpenCL based BFS
implementations and summarize the performance of prior BFS
implementations on FPGAs.

A. Experiment Setup
The graphs used for evaluation includes three real-world

graphs and two synthetic graphs as listed in Table I. The
real-world graphs are from social network (SN) while the
synthetic graphs are generated with R-MAT model. For R
MAT graphs, we follow the Graph 500 benchmark parameters
(A = 0.59, B = 0.19, C = 0.19). The size of a R-MAT graph
is determined by the scale factor 8 and the edge factor E,
which means the graph has 28 nodes and E x 28 edges.
The configurations for the two graphs R19 and R2l are
(8 = 19, E = 32) and (8 = 21, E = 32), respectively. In the
experiments, the OpenCL compiler is based on Intel OpenCL
SDK 16.0.2 for FPGA. The FPGAs used in Harp-v2 is Arria
10 GXl150[8]. The performance metric is million traversed
edges per second (MTEPS). To ensure fair comparison, we
tested 64 non-trivial BFS and averaged the the performance.

B. Performance evaluation
The performance of the proposed BFS accelerator OBFS

as presented in Table II achieves up to 934.2 MTEPS on
the R2l and 567.0 MTEPS on average when the batch size
(B) is 16. Compared to the OpenCL based vertex-centric
BFS implementation from Spector [7], OBFS shows 9.5X
performance speedup, though Spector fails on the other three
graphs due to memory access stall. When compared to the
OpenCL based edge-centric BFS implementation from Chen's
work [4], OBFS achieves 5.5X performance speedup on av
erage. The comparison reveals that OBFS achieves significant
performance speedup over existing OpenCL based BFS im
plementations.

On top of the end-to-end comparison with OpenCL-based
approaches on Harp-v2, we also compare OBFS to prior



TABLE ill: Performance of BFS accelerators on FPGA-DRAM platforms

Dataset Bandwidth Hardware Design MTEPS
System Type (GB/s) Platform Method IFPGA

Work[13] SN 0.1 Virtex-5 S&RTL 160-790
Work[3] fMRI 80 HC-2 M&RTL 62.5-650

CyGraph[l] R-MAT 80 HC-2 M&RTL 420-550
Work[12] R-MAT 3.2 Zedboard M&RTL 90-255
FPGP[5] SN 12.8 VC707 M&RTL 122

ForeGraph[6] SN 19.2 VCUll0 S&RTL 364-1069
Work[16] R-MAT 12.8 Harp-vi M&RTL 330-670
Work[15] SN 19.2 Ultrascale+ S&RTL 1500-3500

OBFS R-MAT 16 Harp-v2 M&OCL 861
OBFS SN 16 Harp-v2 M&OCL 371

RTL-based BFS accelerators. These BFS accelerators may
vary on many different aspects such as graph types, memory
bandwidth, hardware platforms, and evaluation methods. A
summary of these BFS acceleration works is presented in Table
III. Most of the works used either social network (SN) graphs
which are the same or similar to our benchmark sets or R
MAT graphs. High-performance multi-FPGA platforms such
as Convey HC-2 [2] have higher memory bandwidth while
the single-FPGA platforms typically have relatively limited
DRAM bandwidth. These works also differ on evaluation
methods. Some of them obtained the performance via mea
surement on realistic hardware while others rely on simulation.
We use 'M' and'S' to represent real hardware measurements
and simulations, respectively.

According to the performance comparison in the Table
III, OBFS achieves competitive performance to most prior
RTL designs. This demonstrates the potential of utilizing
OpenCL for BFS with inherent irregular memory accesses. We
notice that the performance of OBFS is not as good as that
reported in the simulation result [15]. There may be mainly
two reasons for this. First, current OpenCL has many imple
mentation constraints which may limit the adoption of some
optimization strategies. For instance, Current Intel OpenCL
compiler targeting Harp-v2 does not allow on-chip buffer
sharing between different kernels (This will be resolved in
compilers supporting OpenCL Spec2.0, which defines global
shared on-chip buffer to enable the feature.), so it poses
constraints on BFS pipelining and data path parallelization.
Second, OpenCL based design runs at lower clock frequency
due to the lack of low-level circuit control mechanisms. For
example, RTL design in [15] runs at 250 MHz, but OBFS
ranges from 160 MHz to 200 MHz. While the OpenCL tools
keep evolving. it can be expected that the performance gap
between OpenCL based designs and RTL designs might shrink
in the near future.

IV. CONCLUSION

Handcrafted BFS accelerators with HDL usually suffer high
portability and maintenance cost despite the relatively good
performance. OpenCL-based BFS accelerators can greatly
alleviate these problems, but it is challenging to achieve
satisfactory performance due to the inherent irregular memory
accesses. In this work, we propose a series of high-level opti-

318

mization approaches to improve the irregular memory access
efficiency and pipelining in BFS. Compared to reference BFS
implementations with a vertex-centric framework [7] and an
edge-centric framework [4], the proposed OBFS achieves 9.5X
and 5.5X performance speedup on average respectively. When
compared to the prior HDL-based BFS accelerators, OBFS
also achieves competitive performance.
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