AxCore: A Quantization-Aware Approximate GEMM Unit for LLM
Inference

Jiaxiang Zou"

The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
jlaxiangzou@std.uestc.edu.cn

Chenxi Xu
The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
cxu930@connect.hkust-gz.edu.cn

Abstract

Large Language Models (LLMs) have become foundational to mod-
ern natural language processing, yet their immense computational
and memory demands pose major obstacles for efficient infer-
ence. Transformer-based LLMs rely heavily on floating-point gen-
eral matrix-matrix multiplication (FP-GEMM), which dominates
both compute and bandwidth. In this paper, we introduce Ax-
Core, a quantization-aware, approximate GEMM unit that combines
weight-only quantization with floating-point multiplication approx-
imation (FPMA) to deliver highly efficient and accurate LLM infer-
ence. Unlike traditional GEMM units, AxCore eliminates multipliers
entirely, replacing them with low-bit integer additions in a novel
systolic array. AxCore features several key innovations: (1) a mixed-
precision FPMA-based processing element that supports direct com-
putation on compressed weights and high-precision activations;
(2) a lightweight accuracy preservation strategy, including sub-
normal number handling, error compensation, and format-aware
quantization; and (3) a set of systolic array optimizations, including
shared correction and normalization logic. Evaluations on open-
source LLMs show that AxCore achieves up to 6.3x-12.5X higher
compute density than conventional FP GEMM units. Compared
to state-of-the-art INT4-based accelerators, FIGLUT and FIGNA,
AxCore improves compute density by 53% and 70%, respectively,
while also delivering lower perplexity. AxCore is opensourced at:
https://github.com/CLab-HKUST-GZ/micro58-axcore.

CCS Concepts

« Computer systems organization — Systolic arrays.

“Both authors contributed equally to this research.
 Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1573-0/25/10

https://doi.org/10.1145/3725843.3756094

Yonghao Chen’

The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
ychen433@connect.hkust-gz.edu.cn

Xingyu Chen
The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
xchen740@connect.hkust-gz.edu.cn

Xinyu Chen’

The Hong Kong University of Science
and Technology (Guangzhou)
Guangzhou, China
xinyuchen@hkust-gz.edu.cn

Keywords

Large Language Model, Approximate Computing, Weight-only
Quantization, Hardware Accelerator

ACM Reference Format:

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen.
2025. AxCore: A Quantization-Aware Approximate GEMM Unit for LLM
Inference. In 58th IEEE/ACM International Symposium on Microarchitecture
(MICRO °25), October 18-22, 2025, Seoul, Republic of Korea. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3725843.3756094

1 Introduction

Large language models (LLMs) have revolutionized natural language
processing tasks such as language understanding, translation, and
generation [10, 42, 48, 53]. These models comprise multiple stacked
transformer layers, containing billions to hundreds of billions of
parameters, leading to substantial memory and computational de-
mands. For instance, GPT-3, with 175 billion parameters, requires
approximately 350GB of memory in FP16 representation [5], far
exceeding the capacity of standard hardware accelerators like GPUs
[7]. The core computational bottleneck in LLMs stems from the
transformer architecture, where general matrix-matrix multiplica-
tion (GEMM) operations dominate both arithmetic throughput and
memory bandwidth. These GEMM kernels, typically implemented
using floating-point arithmetic (e.g., FP16 or BF16), are hardware
expensive, hindering efficient inference.

Quantization has emerged as a key technique to address these
challenges by representing high-precision floating-point values
with lower-precision data types. In particular, weight-only quanti-
zation, which compresses model weights into low-bit formats (e.g.,
INT4 or FP4) while preserving higher precision activations (e.g.,
FP16), has been widely adopted for LLM inference [12, 15, 26, 29,
30, 45]. This approach is effective because model weights consume
significantly more memory than activations, and activations, be-
ing dynamic and input-dependent, are difficult to quantize without
compromising model accuracy [29, 30, 51]. However, such quantiza-
tion necessitates mixed-precision GEMM (mpGEMM) units, where
specialized hardware directly handles high-precision activations
with quantized weights, thereby eliminating the explicit dequanti-
zation step required by traditional GEMM units and improving both
throughput and bandwidth efficiency [22, 40, 43, 46, 49, 50, 54].

https://orcid.org/0009-0000-8613-2589
https://orcid.org/0009-0008-6273-9894
https://orcid.org/0009-0002-6028-0019
https://orcid.org/0009-0001-0405-436X
https://orcid.org/0000-0003-1951-5015
https://github.com/CLab-HKUST-GZ/micro58-axcore
https://doi.org/10.1145/3725843.3756094
https://doi.org/10.1145/3725843.3756094

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

FPC (FP4) BN FIGNA (INT4) B8 AxCore (FP4)

o
§ % 11.0
36
2]
5.3

5 2105

>
B, 40 5
E H [5
N 2100 S
e | g oS
5 05 7
Z FPl6 BF16 ” OPT-13B OPT-30B OPT-66B

(a) Compute density comparison (b) Accuracy comparison

Figure 1: AxCore achieves significantly higher compute den-
sity and comparable or better perplexity compared to conven-
tional FP GEMM cores (FPC) and state-of-the-art INT4-based
accelerator FIGNA [22].

Meanwhile, floating-point multiplication approximation (FPMA)
using integer addition has gained increasing attention for effi-
cient model inference [24, 33, 36]. Mitchell’s logarithm approxima-
tion [35] suggests that floating-point numbers can be interpreted
within a logarithmic number system, while Gustafsson et al. [20]
theoretically demonstrate that floating-point multiplication can be
replaced with integer additions. This insight reveals that the costly
floating-point multipliers in GEMM units can be substituted with
simpler integer adders, offering significant resource savings for the
intensive computations required by LLMs. While promising, exist-
ing FPMA methods are limited to uniform-precision settings and
suffer from accuracy loss when applied to deep LLMs, particularly
under low-bit quantization, where subnormal values are frequent
and error accumulation is non-trivial.

In this paper, we propose AxCore, a quantization-aware, approx-
imate mpGEMM unit tailored for LLM inference. AxCore fuses low-
bit quantization with FPMA to deliver highly efficient, multiplier-
free mix-precision matrix multiplication, while preserving end-to-
end model accuracy. It is built upon the following innovations:

e Mixed-Precision FPMA Processing Elements (PEs): AxCore
extends FPMA to support direct mpGEMM between high-precision
activations and low-bit quantized weights, which reduces dat-
apath width and PE complexity. The design supports multiple
floating-point formats concurrently, enabling flexible inference
across diverse quantization configurations.

o Lightweight Accuracy-Preserving Co-Design: To mitigate
the approximation errors inherent in FPMA, AxCore introduces
a lightweight software-hardware co-design featuring: (1) online
subnormal number conversion for correctness in low-bit formats;
(2) online constant-based error compensation; and (3) adaptive
format-aware offline quantization.

e Optimized Systolic Array Architecture: AxCore employs a
highly efficient systolic array architecture that shares error cor-
rection logic and result normalization logic across PEs to reduce
hardware resource consumption.

Extensive evaluations show that AxCore delivers superior hard-
ware efficiency and accuracy. As shown in Figure 1, in the W4A16
setting, AxCore achieves up to 6.7X higher compute density than
conventional FP GEMM cores and 1.7x over INT4-based design,
FIGNA [22]. Despite its approximate design, AxCore maintains com-
petitive or even better perplexity compared to existing solutions.

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

For instance, on the OPT-30B model, AxCore achieves a perplexity
of 9.78, outperforming both FPC (9.82) and FIGNA (9.95). AxCore
enables efficient LLM inference by bridging the gap between ap-
proximate computing and mpGEMM operations.

2 Background

2.1 GEMM in LLM Inference

Large Language Models (LLMs) are typically composed of multiple
stacked transformer decoder blocks [5, 42, 48, 53], each containing
masked self-attention and linear transformation layers. While the at-
tention mechanism offers reasoning capability of transformers, the
linear layers, including feed-forward networks and attention projec-
tions, dominate the computational workload of LLM inference and
contribute the majority of the model parameters [5, 10, 42, 48, 53].
These layers rely heavily on general matrix-matrix multiplication
(GEMM) because their core computations are dense linear trans-
formations that map high-dimensional input activations to output
activations through large weight matrices.

Figure 2 illustrates the relative number of operations within
attention mechanisms and linear layers across various sequence
lengths for OPT-175B and LLaMA-3.1-405B. As shown, while the
computational proportion of attention increases proportionally
with sequence length during LLM inference, GEMM operations in
linear layers continue to dominate the computational workload
(69% - 99%) at practical sequence lengths (10k—20k tokens) [41]. No-
tably, during the prefill phase, GEMM is also predominantly used in
attention [22], which means that the true computational proportion
of GEMM is even larger. This trend highlights that optimizing linear
layer GEMM remains critical for improving overall LLM inference
efficiency at scale.

[NN Attention
OPT-175B

B Linear]
LLaMA-3.1-405B

1.00
0.75
0.50

0.2
0

0

0.25

Relative OPs Percentage
(=}
(=}

o

0.00

Sequence Length Sequence Length

Figure 2: Relative proportion of operations (OPs) in attention
mechanism and linear layers of OPT-175B and LLaMA-3.1-
405B across various sequence lengths with a batch size of 32.

2.2 Weight-only Quantization

To reduce both memory and computational overhead, quantization
techniques are widely used in LLM inference. Quantization maps
high-precision weights to compact low-bit formats (e.g., INT4 or
FP4), significantly shrinking model size and reducing arithmetic bit
width. In particular, weight-only quantization is especially practical
for LLM inference. Model weights typically consume substantially
more memory than activations, making weight quantization highly
effective for reducing memory footprint and bandwidth require-
ments. In contrast, activations are dynamic and input-dependent,
and aggressively quantizing them often results in significant accu-
racy loss [27]. As a result, weight-only quantization—where low-bit
weights are combined with higher-precision activations (e.g., FP16

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

or BF16)—has become the standard in both academic research and
industry practice, widely adopted in modern AI hardware accelera-
tors such as GPUs and TPUs [15, 18, 28, 29, 39].

Quantization typically maps a weight w into a lower-bit repre-
sentation wg via a scaling factor s:

_ Wmax

, wg = clamp (round (2) » —Fimaxo Fmax) ,
s

Fmax
where Fpax is the maximum representable value in the target format
(e.g., 7 for INT4). The round represents the rounding in integer
quantization or mapping in floating-point quantization [32, 55].
The clamp constrains quantized weights within the representable
range [Fmin, Fnax].

To preserve accuracy under aggressive low-bit quantization,
grouped quantization is often applied [15, 29, 55]. This strategy
divides weight tensors into smaller groups (e.g., 32 or 128 elements)
and assigns each group a dedicated scaling factor (typically in
FP16). This fine-grained approach better captures local distribu-
tions within each group, reducing quantization error.

2.3 Quantization-Aware GEMM

In LLM inference, GEMM operations involve multiplying large
matrices of weights and activations. When executed without quan-
tization, GEMM is performed using full-precision operands (e.g.,
FP16 x FP16) [5, 29, 42, 48, 53], as illustrated in Figure 3a. With
weight-only quantization, there are two common GEMM execu-
tion strategies [15, 29, 49, 50]: indirect GEMM (Figure 3b), where
quantized weights are first dequantized (i.e., multiplied by a scaling
factor) to reconstruct floating-point values before GEMM is per-
formed, and direct mixed-precision GEMM (mpGEMM) (Figure 3c),
where GEMM is performed directly between low-bit weights and
FP activations, followed by dequantization only on accumulated
outputs. Direct mpGEMM is more hardware-efficient because it
requires lightweight datapaths of GEMM units and avoids the over-
head of per-weight dequantization [22, 40, 43, 46, 49, 50, 54].
Wq (FP4/INT4)

Dequantization

W (FP16) A (FP16) Wr (FP16) A (FP16) Wq (FP4/INT4) A (FP16)
(GEMM] GEMM] [mpcEMM]
v
l l 0q (FP16)
O (FP16) O (FP16) Dequantization
O (FP16)
(a) Standard GEMM (b) Indirect GEMM (c) Direct mpGEMM

Figure 3: Comparison of GEMM computation modes, with
4-bit quantized weights and 16-bit activations.

To reduce the hardware complexity of mpGEMM units, many
hardware accelerators adopt uniform quantization formats such
as INT4 or INT8 due to their simplicity [22, 40, 54]. For instance,
FIGNA [22] uses INT4 quantization and designed INT4-FP16 mp-
GEMM units, delivering up to 4 times area savings. However, uni-
form formats distribute values evenly, which does not align well
with Gaussian-like distribution of LLM weights [19]. By contrast,
non-uniform formats (e.g., FP4, FP8) allocate more representation
near zero, showing higher accuracy potential. In this work, we
demonstrate that FP-based quantization offers superior accuracy

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

but also enables more efficient hardware implementation through
our proposed AxCore architecture.

2.4 FP Multiplication Approximation with
Integer Addition (FPMA)

Floating-point (FP) multiplication is a fundamental operation in
many applications but remains costly in terms of hardware area
due to its complexity. According to the IEEE 754 standard [1], a
normalized floating-point (FP) number x is represented as:

x=(-1)% 2B B (14 M), 0<M, <1, ®)

where Sy is the sign bit, Ey is the exponent represented using
NE bits (i.e., Ng denotes the bit-width of the exponent field), and
B = 2NE~1_1 denotes the bias. My, is the mantissa which is encoded
using N bits and implicitly assumes a leading one. FP multiplica-
tion requires separate computation over sign, exponent, and man-
tissa, followed by normalization and rounding, leading to notable
hardware costs.

To address this inefficiency, Floating-Point Multiplication Ap-
proximation (FPMA) [6, 20, 31] replaces expensive multiplication
with simpler integer additions. Based on Mitchell’s logarithmic
approximation [35], FPMA approximates a floating-point number
x into the logarithmic domain as:

log,(|x]) = Ex — B+1logy(1+ My) = Ex — B+ My (3)

By linearizing the logarithmic term, the FP multiplication r = x - y
is approximated as:

logy(|r]) = loga(|x - y|) = (Ex + Myx) + (Ey + My) = 2B (4)

Since the product r can also be denoted as logy(|r|) ~ E, + M, — B,
it enables the approximate multiplication to be implemented via:

R=X+Y-B (5)

where X = Ex + My, Y = Ey + My, and R = E, + M, which is the
binary approximation of the result. All additions are integer opera-
tions, eliminating the need for complex multipliers. Notably, the
result R is already a standard floating-point value with its exponent
and mantissa bits in order, requiring no special reconversion.

While FPMA offers substantial hardware efficiency, it introduces
approximation error due to the linearization of the logarithmic
term, i.e,, log, (1+M) = M. This simplification can lead to accuracy
degradation in precision-sensitive models like LLMs. Additionally,
FPMA assumes normalized floating-point numbers and is not di-
rectly applicable to subnormal numbers, which represent very small
values and lack an implicit leading 1 in the mantissa.

3 Adopting FPMA for Quantized LLM Inference

3.1 Challenges

While FPMA shows a large potential for improving hardware effi-
ciency by replacing FP multipliers with lightweight integer adders,
its adoption in quantized LLM inference remains challenging.

Challenge 1: Hardware Support for FPMA-based mpGEMM.
Modern LLMs commonly use weight-only quantization, which re-
sults in mpGEMM operations, such as computing FP16 activations
multiplied by FP4 or INT4 weights. While FPMA can be applied to

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

indirect GEMM (Figure 3b) by approximating full-precision multi-
plications after dequantization, this approach negates the efficiency
benefits of quantization. To fully exploit low-bit representations,
FPMA must support direct mpGEMM (Figure 3c) where weights
remain compressed during computation.

However, traditional FPMA methods only support uniform pre-
cision (e.g., FP16 X FP16), and extending them to mpFPMA requires
a fundamental redesign of the processing elements (PEs) and dat-
apaths. The challenge lies in aligning operands of different for-
mats, addressing bias mismatches, and maintaining adequate accu-
racy in integer-based approximation. Moreover, designing efficient
mpGEMM units that can handle such mixed-precision integer-based
computations with minimal datapath overhead and maximal reuse
is non-trivial. Without careful architectural innovations, mpFPMA
suffers from excessive datapath width, inefficient format alignment,
and redundant correction logic in each PE, limiting its scalability
and hardware efficiency.

Challenge 2: Preserving Accuracy with Minimal Costs.

FPMA relies on the approximation log,(1 + M) ~ M, which in-
troduces systematic error that accumulates across layers in deep
models. Figure 4 shows the perplexity degradation when applying
FPMA across different sizes of the OPT model. While FP4 intro-
duces moderate accuracy loss compared to full-precision FP16, in-
troducing FPMA leads to noticeably higher perplexity. Note that
perplexity difference > 1% usually is considered as significant. This
demonstrates that FPMA, when used without proper error com-
pensation, can result in unacceptable performance degradation.
Although prior works [31, 33] have introduced error compensation
techniques, such as bit-serial correction or additional bias terms,
to mitigate FPMA numerical error, these approaches are typically
tailored for same-precision FPMA (e.g., FP16 X FP16). They do
not generalize to mixed-precision FPMA (mpFPMA), where inputs
differ in format and bit-width (e.g., FP16 x FP4).

Additionally, quantization into low-bit FP formats (e.g., FP4)
generates a higher proportion of subnormal numbers due to signif-
icantly fewer exponent bits. This is because subnormals in low-bit
formats can represent relatively large numerical ranges. However,
without a hidden leading 1 in their mantissa, subnormals make
FPMA mathematically incorrect, leading to significant inaccuracies.
As shown in Figure 4, failing to handle subnormals properly in mpF-
PMA (naive mpFPMA) leads to further degradation in perplexity,
which is an issue largely ignored in existing works.

3.2 Our Solution - AxCore

To address the above challenges, we propose AxCore, a quantization-
aware, approximate mpGEMM unit that tightly integrates FPMA
with low-bit quantization for efficient and accurate LLM inference.
Feature 1: Efficient mpGEMM Execution via mpFPMA-based
Systolic Array Unit.

To tackle the challenge of supporting mixed-precision GEMM with
FPMA, AxCore introduces a systolic array of optimized mpFPMA
PEs capable of directly computing on compressed low-bit weights
and high-precision activations. To reduce datapath width and PE
complexity, AxCore applies correction advancing, precomputing
correction terms outside the PE and sharing them within rows.
Normalization is deferred to a shared unit to reduce per-PE logic,

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

FPC (FP16) ESNIFPC (FP4) 28 FPMA (FP4) BEl naive mpFPMA (FP4)

=

OPT-2.7B 13.83 | 121 OPT-6.7B 11.83

12.97

—_
w2

12.47

OPT-13B 10.0{ OPT-30B

10.56 9.82
9.8

._
o
[

10.40

10.13 \
10,022

Figure 4: Perplexity comparison across different OPT model
sizes using various computation methods. Activations are
in FP16. FPMA and mpFPMA without subnormal handling
result in significant accuracy loss.

961 9.56
V7774

Perplexity on WikiText2
5

while FPMA-based dequantization eliminates the need for post-
GEMM multipliers.

Feature 2: Lightweight Accuracy Preservation Mechanisms.
To address the inherent error introduced by FPMA, AxCore em-
ploys a lightweight compensation mechanism designed specifi-
cally for mixed-precision settings. This includes precomputed bias
and correction terms that stabilize outputs across diverse operand
combinations. Crucially, each PE integrates a subnormal number
conversion logic, which detects and converts subnormal values
to the nearest normalized representations, preventing accuracy
degradation caused by malformed mantissa. In addition, AxCore
employs adaptive format-aware quantization, dynamically selecting
the most suitable FP4 encoding (e.g., ETM2, E2M1, E3M0) per weight
group. This fine-grained adaptability further enhances quantization
fidelity across layers with varying value distributions. Together,
these features enable AxCore to deliver high hardware efficiency
while maintaining the accuracy required for LLM inference.

4 Accuracy-Preserved mpFPMA for LLM
4.1 Extending FPMA to mpFPMA

To enable efficient mixed-precision general matrix-matrix mul-
tiplication (mpGEMM) for quantized LLM inference, we extend
Floating-Point Multiplication Approximation (FPMA) to support
operands with different precision levels. While the approximation
formula remains structurally similar to conventional FPMA, the bit
widths, fixed-point alignment, and bias correction must be carefully
redesigned. For illustration, we denote r = a X wq as the multi-
plication between the input activation a in FP16 and the low-bit
quantized weight wg in FP4.

In mpFPMA, operands are first aligned to a common fixed-
point representation to ensure correct addition. Since FP4 contains
fewer mantissa bits than FP16, we left-shift (i.e., zero-pad) the FP4
operand’s mantissa to match the resolution of FP16. The aligned
value is expressed as:

Align(wg) = wg < (Mantissappis — Mantissappy) (6)

This ensures the radix point aligns across both operands. However,
due to differing exponent biases (e.g., 15 for FP16 vs. 1 for FP4
E2M1), a format-aware bias correction term Bj is needed:

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

By =Ba+ Bwq - By (7)
where B,, B, and B; are the exponent biases of the activation,
the quantized weight, and the result, respectively. For typical con-
figurations where the activation and result are both in FP16, this
simplifies to By = B,,. Combining the alignment and bias cor-
rection, the approximate result R of the mixed-precision product
is:

R= A+ Align(W,) - By (8)

To illustrate, consider multiplying an FP4 (E2M1) weight encoded
as “0_01_1" (representing 1.5) with an FP16 activation of 2. The
aligned FP4 becomes “0_00001_1000000000”, and the bias correc-
tion value B; corresponds to 1. Adding the two and subtracting the
bias yields a final result of 3, accurately approximating 1.5 X 2.

To improve the numerical fidelity of mpFPMA, especially un-
der quantization noise and approximation error, we introduce a
constant compensation term C; (details in Section 4.3). The final
mpFPMA expression becomes:

R=A+ Align(Wq) -B1+(Cy 9)

where R, A, and W; are the binary approximation of the result,
activations, and weights, respectively. This formulation allows Ax-
Core to efficiently and accurately approximate mixed-precision
multiplications using only integer additions.

4.2 Handling Subnormal Numbers in mpFPMA

As the bit width of floating-point numbers used in quantized LLM
inference continues to shrink, particularly with formats like FP4,
the handling of subnormal values becomes increasingly critical.

4.2.1 Problems with Subnormal Numbers. In floating-point
formats, subnormal values are used to represent numbers that are
very close to zero, smaller than what can be encoded with the
lowest normalized exponent. These values help preserve gradual
underflow and allow for finer resolution near zero. A subnormal
number has an exponent of 0 and no implicit leading one:

Xoub = (-1)% 2178 M (10)

with sign bit S, exponent bias B, and mantissa M. Compared to
the normalized floating-point number (shown in Equation 2), this
removes the “1+” in the mantissa and shifts the exponent range
downward. As a result, FPMA approximation no longer holds math-
ematically due to its reliance on the approximation log, (1+M) = M,
leading to significant inaccuracies.

Low-bit floating-point formats, such as FP4 or FP8, tend to en-
counter a much higher proportion of subnormal values compared
to higher-precision formats like FP16 or FP32. This arises due to
the significantly reduced number of exponent bits. For example,
FP4 typically uses only 2 exponent bits, which limits the number
of representable exponent values to just four. As a result, the range
of normalized numbers is extremely narrow, meaning that many
small-magnitude values fall outside this limited normalized range
and are encoded as subnormals. While in higher-precision formats
subnormals represent extremely rare edge cases with very small
magnitudes (often below 10738 in FP32), in low-bit formats like
FP4, subnormals can represent relatively large values, sometimes
as high as 0.5. This makes them much more common, particularly

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Table 1: Subnormal Number Conversion Table

M1
subnormal value normal or 0 value
(0).0 0 - return 0 0
(0).1 05 — (1).0 0.5
M2
subnormal value normal or 0 value
(0).00 0 - return 0 0
(0).01 025 — (1).00/return0 0.57/0]
(0).10 05 — (1).00 0.5
(0).11 075 — (1).10 0.75
M3
subnormal value normal or 0 value
(0).000 0 - return 0 0
(0).001 0.125 — return 0 0
(0).010 025 — (1).000 /return 0 0.5 /0]
(00011 0375 — (1).000 0.5
(0).100 05 — (1).000 0.5
(0).101 0625 — (1).010 0.625
(0).110 075 — (1).100 0.75
(0).111 0875 — (1).110 0.875

in quantized weights where small values are frequent. Therefore,
subnormals are no longer edge cases in low-bit formats and must
be handled carefully in FPMA.

M E M

E ———
(EM2) [S 011

slo/1lo

. . .
—

Y

521’B§>< {(0)4—%—}-%} §2°*B§>< {(1)+%+%}

1
]

1
]

“011” in Subnormal Encoding “010” in Normal Encoding

Figure 5: The value represented in subnormal encoding “011”
and its equivalent normal encoding “010” in E1M2.

4.2.2 Subnormal Number Conversion (SNC). While FPMA
support for subnormal values is largely overlooked in existing
works, we address this problem by proposing a lightweight subnor-
mal number conversion (SNC) method. We observe that subnormal
and normal floating-point encodings can represent values that are
numerically close. For instance, as shown in Figure 5, a subnor-
mal value with mantissa “11” in FP4 (E1M2) represents the value
(-1)S - 2(1-B) . o+ % + 711) = (-1)5- 2(1=B) . g 75, according to
Equation 10. If we map it to the normalized encoding “10”, accord-
ing to Equation 2, this yields the value (-1)5 - 2(0=B) . (1 + %) =
(-1)8 - 201=B) . 0,75, which is equivalent to the original value in
its subnormal form. Therefore, if we convert subnormal inputs to
normalized values that are numerically nearest, the mathematical
fidelity of FPMA for subnormal values can be preserved.

The conversion relationship between subnormals and normals
is presented in Table 1. Because subnormal conversion primarily
affects the mantissa, the table organizes the mappings by mantissa
bit-width, covering three representative scenarios: M1, M2, and M3.
In each case, the first column lists subnormal encodings (with an

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

1.00 1.00 0.030
0.025

0.75 0.75
0.020
S0.50 =0.50 0.015
0.010

0.25 0.25
0.005
0.000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

a a
(a) Before compensation (b) After compensation

Figure 6: Square error distribution of mpFPMA. The x-axis
represents activation (FP16) mantissa M, and the y-axis rep-
resents weight mantissa M,, including E3M0, E1M2 and E2M1.

implicit leading zero), while the third column shows the correspond-
ing normalized encodings (with an implicit leading one) that are
numerically closest. The second and fourth columns indicate the
actual decimal values these encodings represent.

At runtime, AxCore identifies subnormal encodings and replaces
them with the nearest valid normalized values based on this prede-
fined mapping. In cases where subnormal values cannot be exactly
mapped to a normalized representation, the nearest normalized
value is selected. These entries are marked with underlines in the
table. Naively rounding all such values in a fixed direction (e.g.,
always up or down) can introduce systematic bias, which accumu-
lates across matrix multiplications. To mitigate this, AxCore adopts
a random selection policy between rounding up (1) and rounding
down () when approximating subnormals. This strategy ensures
that rounding decisions alternate evenly, balancing the accumulated
error across large-scale computations.

4.3 Error Compensation for mpFPMA

The approximation used in FPMA (i.e., log, (1+M) ~ M) introduces
a predictable numerical error, which depends primarily on the
mantissa values of the input operands.

4.3.1 Analysis of Error Distribution. To understand and ad-
dress this, we analyze the error by comparing the approximated
result with the exact multiplication result. Figure 6a illustrates the
square error distributions for different bit-width mpFPMA configu-
rations. The results reveal a highly non-uniform error distribution
that varies across the mantissa space, making it difficult to estab-
lish a simple arithmetic relationship between errors and mantissa
values for direct compensation [20] .

While there are no effective error mitigation techniques specif-
ically designed for mpFPMA, directly extending existing FPMA
compensation strategies often incurs substantial overhead. Previ-
ous work [31] has used fine-grained compensation strategies by
assigning individual compensation values for each M,-M,, pair to
reduce errors in FP8 formats such as E4M3. However, as precision
scales up from E4M3 to E5M10 for activations, the required on-chip
storage makes such approaches impractical.

4.3.2 Mean-Based Constant Compensation. To overcome these
limitations, we propose a constant-based mean compensation strat-
egy that introduces a single, precomputed correction value C; to re-
duce the cumulative approximation error in mpFPMA. This method
leverages the observation that the average approximation error

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

across all possible mantissa combinations provides adequate er-
ror correction for LLMs. Figure 6b shows error distribution after
applying the proposed compensation. To quantify the approxima-
tion error introduced by mpFPMA, we define the element-wise
error as £(mg, myy), representing the discrepancy between the ex-
act floating-point product and its approximate counterpart for each
mantissa pair. To obtain a single correction value, we average the
expected error across all valid mantissa combinations. This yields
the format-specific compensation constant Cy, defined as:

1
= Nar N Z e(mg, may) (11)

Mmq,Myy

1

where Ny, is the bit-width of the weight mantissa, and mg, m,,
denote the sets of representable mantissa values for the activation
and weight, respectively.

Therefore, given the number of mantissa bits in the input data
format, the error compensation value can be precomputed in a
one-time process and applied universally for all models or layers
with negligible overhead.

This approach has several practical advantages: it introduces no
runtime overhead since compensation values can be precomputed,;
it requires minimal additional logic; and it generalizes easily across
multiple FP format pairs, including FP16 X FP4, BF16 X FP4, FP16
X FP8, etc. Our experiments show that a single constant value per
format pair achieves substantial accuracy recovery, making this
method both efficient and effective for quantized LLM inference.

4.4 Adaptive Format-Aware Quantization

To preserve accuracy under aggressive quantization, we propose
a format-aware method that supports multiple low-bit FP formats
within a unified framework. This observation stems from the fact
that weights within layers of LLMs exhibit increasingly diverse
value distributions as the quantization granularity becomes finer [21].
Relying on a single low-bit format (e.g., E2M1) often results in sub-
optimal quantization when its range or resolution mismatches local
data. Our format-aware quantization is novel in two ways: (a) it
operates block-wise, allowing finer adaptation to local distributions;
and (b) it is co-designed with AxCore’s on-the-fly mixed-format
processing to assign optimal FP4 formats (e.g., E3M@ for sparse, ETM2
for uniform data) per block. Consistent with NVIDIA’s FP4 [38] and
LLM-FP4 framework [32], these formats dedicate all bit patterns to
encoding valid finite numbers.

4.4.1 Block-wise Format Selection. Rather than enforcing a
fixed format or tensor-wise format across the model [19, 47], we
adopt a block-wise adaptive strategy that selects the optimal FP4
format for each weight block. In the 4-bit quantization case, our
approach considers three representative FP4 formats: E3M0 (power-
of-two-like), E2M1 (standard), and E1M2 (uniform). Each of these
formats provides different trade-offs between dynamic range and
granularity, making them more or less suitable depending on the
local weight distribution. This format selection is performed using
an offline procedure where the weight matrix is first partitioned into
blocks of size g X n, where g represents the weight group size along
the input channels and n denotes the number of output channels
per block, with both n and g required to be a multiple of the GEMM
array size. Each block contains n weight groups. For each block, we

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

Layer 0 Layer 29
E1IM2 E2M1 E3MO E2M1 E1IM2
0.4 0.4
| J
02
|
4098
- s
0 “ 0 : 2048 @
Iy, . 2048 v & I 2048 v O
Put o 40950 & Put oy 40950 ¥
Ang; O& Qnng; o&‘

Figure 7: Weight distribution of the attention output tensor
for selected layers in Llama2-7B, illustrating the suitability
of different FP4 formats.

evaluate all candidate formats by quantizing the n weight groups
and selecting the format that minimizes the mean squared error
under the actual input activation distribution using a calibration
dataset [16]. This format selection objective is formulated as:

Dtype = argminge p||A - wid_—A. W||§ (12)

where D denotes the set of candidate FP4 data types E3M0, E2M1,
E1M2, W represents the weight tensor after quantization and sub-
sequent dequantization using a specific data type d, W corresponds
to unquantized weight tensor, and A represents the activations.
This format selection process therefore has a similar overhead to
conventional static quantization [28].

Figure 7 visualizes the distribution of weights of attention output
tensor in layer 0 and layer 29 of Llamaz2-7B. Specifically, Layer 0
and Layer 29 exhibit distinct distribution characteristics. In Layer
0, the weight distribution shows sharp peaks suitable for power-of-
two-like encoding, and our method selects the FP4 E3M@ format
accordingly. In contrast, Layer 29 shows a wider and more uniform
distribution, where FP4 E1M2 and E2M1 are more appropriate.

4.4.2 Integration with FPMA. We also extend this format-aware
quantization to integrate seamlessly with FPMA. Unlike conven-
tional quantization:

wg = clamp (round (%)) (13)

we redefine quantization and dequantization using FPMA-style
approximation:
wgq = clamp (round (w — S+ B - C)) (14)
wr =wg+S—-B+Cy (15)
Here, S, B, C, and C, are precomputed constants representing the
binary representation of FP number scale, bias, and format-specific
compensation terms, respectively. C represents the compensation
applied during quantization, while Cz denotes the compensation
applied during dequantization. Combining Equation 14 and Equa-
tion 15 yields:

Wy X W (16)
showing that the FPMA compensation values C and C, can cancel
out, thereby preserving the original value and ensuring correctness.

While conventional floating-point quantization and reconstruc-
tion (i.e., w — wg — w;) introduce numerical drift due to division
and multiplication inaccuracies, FPMA-based quantization relies

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Weight Buffer
‘ ‘(Preload)‘

| STEP1

STEP.3

- Wq

g:) P '
5 g '
a . H '
E i [sNc]
i H)
z f]
2 R . '

R
— STEP2 % ¥ ¥ ¥
((Norm) [Norm] [Norm] ((Norm)
STEP.4

¥ 2 ¥ ¥
[AxScale| [AxScale| [AxScale] [AxScale]
(

Accumulator |

Figure 8: AxCore systolic spatial array architecture.

only on addition and subtraction, which exhibit less rounding bias
and improved numerical consistency.

5 AxCore Architecture

5.1 Overview

In the weight-stationary dataflow of AxCore, quantized low-bit
weights (e.g., FP4) are pre-loaded and held stationary within the
PEs of each column, while high-precision activations (e.g., FP16)
are propagated horizontally across each row. A centralized PreAdd
unit pre-computes an intermediate value, T, by applying correction
terms to the activation. This is calculated using the formula T = A—
B1+Cy, where A is the high-precision activation, Bj is the exponent
bias correction, and Cj is the format-specific compensation constant.
The resulting values are then propagated along the row to minimize
logic duplication across PEs.

Inside each PE, AxCore introduces a carefully pipelined microar-
chitecture. The incoming low-bit weight passes through a dedicated
Subnormal Number Conversion (SNC) unit. This module identifies
subnormal values and remaps them to nearby normalized represen-
tations on a per-format basis. The output of the SNC is unified into
a shared internal format (e.g., S1E3M2), allowing downstream logic
to remain format-agnostic. This enables support of multiple FP for-
mats (e.g., E3M0, E2M1, ETM2 for FP4) concurrently across the array,
which is essential to enable adaptive format-aware quantization.
The aligned weight is then summed with the previously computed
T using a lightweight integer adder, a simple 2-input addition that
replaces traditional multipliers entirely.

Post-processing consists of three stages: Normalization, to adjust
the result into standard floating-point format; AxScale, which re-
places dequantization multipliers with FPMA-based addition logic
for efficient scaling; and Accumulator, which adds scaled partial
sums with previously stored values.

5.2 mpFPMA Processing Elements

5.2.1 Overview. As depicted in Figure 9, each PE is logically
composed of two sequential blocks: an Approximate Multiplication
(Approx Mult) block and an Accumulation block. The PE receives
two primary inputs: the low-bit quantized weight Wy and the pre-
computed intermediate value T from the PreAdd unit. The term T
is computed externally by the PreAdd unit and propagated across

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Approx Mult

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

Wq Py,

-B1+Cy

""" \re

Figure 9: Architecture of Processing Element in AxCore.

Stochastic

Bit

) Zero

(=07} 0 Flag
0.

Bypass E3MO0

[ETETE] [] (E3Mo) ;
e e

3 bits 2 bits

FormatSel

Normals .

/SI}l;Jnorlnals Normals E [T TEMM] (EiMz2) E

! E2MI Cvt. Wa i [s] [TE[EM]] (B2M) !
(FP4) (S1E3M2) |

(a) SNC
Figure 10: Subnormal Number Conversion (SNC) unit.

(c) Output format

all PEs in a row. Upon entering the PE, the quantized weight Wy is
first processed by the SNC unit. This module identifies subnormal
values and maps them to the nearest normalized representation.
The SNC-processed weight undergoes mantissa alignment. Since
the precision of weights is typically lower than that of activations,
the weight’s mantissa is zero-padded to match the activation’s fixed-
point domain. The aligned weight is then added to the term T via a
low-bit integer adder, completing the function of the Approx Mult
block and yielding the product R = T + Align(Wy). The product R is
then processed by the Accumulation block, which includes a Guard
Unit that checks whether either the activation or weight is zero.
If either input is zero, the Guard Unit enforces the output R to be
zero. The resulting value R is then forwarded to a Partial Floating-
Point Adder, which accumulates it with the vertically propagated
partial sum Pgyp. This adder, which shares the same width as the
activation input, performs accumulation in-place and defers full
normalization and rounding to the post-processing stages.

5.2.2 Subnormal Number Conversion (SNC) module. The
architecture of the SNC unit is presented in Figure 10a, where FP4
is used as the example weight format. SNC unit receives an input
quantized weight Wy, which may be encoded using one of several
FP4 subtypes: E1M2, E2M1, or E3M9, as illustrated in Figure 10b. The
FormatSel signal selects the appropriate format-specific decoder
(e.g., M2 Cvt, M1 Cvt), and the input is routed accordingly. Within
each decoder block, a small logic table checks for subnormal en-
codings (e.g., S-0-00) and maps them to nearby normalized values.
Since input Wy may contain both normal and subnormal values,
the SNC includes a bypass path for normal entries.

The Zero Flag unit detects all-zero inputs and signals this condi-
tion to the downstream Guard unit. Beyond basic zero detection, it
also facilitates stochastic rounding for subnormal values that lack
exact normalized representations. Since rounding down always

g

Add FP Add

Pre) [(mp | (Partial
4

P

sum
Norm | «e.
f n

(a) Partial Add in PEs

Figure 11: Optimizations for resource sharing across PEs,
including advanced correction in PreAdd module and post-
poned normalization in Norm module.

results in zero, the Zero Flag is leveraged to control the rounding
direction. When a subnormal value requires randomized round-
ing, the Zero Flag is set using a stochastic bit, sampled from the
most significant mantissa bit of the activation. Otherwise, it is de-
termined through conventional zero detection. This mechanism
enables alternating rounding directions and reduces bias in repeated
approximations.

The converted outputs are all transformed into a unified internal
format: STE3M2. As illustrated in Figure 10b. The reason for choos-
ing STE3M2 is to provide a common representation that supports
all FP4 subtypes simultaneously, enabling adaptive format-aware
quantization in AxCore. This design allows each group of weights
to flexibly select the most appropriate FP4 encoding format (E1M2,
E2M1, or E3M0) during quantization based on distribution character-
istics, while still maintaining hardware simplicity during inference.

5.3 Systolic Array Optimizations

5.3.1 Correction Advancing. In mixed-precision FPMA (mpF-
PMA), the approximate multiplication result is computed as R =
A+ Wy — By +C1, where By and Cy are bias correction and compen-
sation terms determined solely by the FP formats of the operands.
Since these correction values are constant per GEMM row and
independent of the weight values Wy, AxCore extracts their com-
putation from each PE and relocates it into a centralized PreAdd
module (shown in Figure 11b). This module computes the shared
term T = A — B + C; once per row and streams it to all PEs. As a
result, each PE only needs to perform a lightweight integer addi-
tion R = T + Align(Wy), significantly simplifying its datapath and
reducing silicon area.

Figure 12 compares mpFPMA PE designs with and without this
technique. In the baseline design (Figure 12a), each PE directly
receives the high-precision activation A (e.g., FP16) and the SNC-
processed weight Wy (e.g., FP4). Since the SNC output is expressed
in the STE3M2 format and must be aligned with the FP16 exponent
domain, computing A + Wy requires a 7-bit adder (5 bits from the
aligned exponent and a 2 bits from mantissa). To apply correction,
a separate 15-bit adder is required to compute C; — By, which spans
both exponent and mantissa fields. The combined term C; — By can
be efficiently viewed as a concatenation of —B; and Cj, because
they operate over different bit fields. While functionally effective,

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

A (FP16) [Sa Ba | My |
" 7-bit adder <5 |
v/ ! - Inside
W, (FPg) L9wq1 P Bw, [Mw] T o of PE
i 15-bit-adder 5P A
C1—B; (S16) [—Bi (6bits) [C1 (10 bits)]
(a) mpFPMA PE without Correction Advancing
A (FP16) ‘SA‘ Ey ,L My I)
. / 1 Outside
. 15-bit-adder = ! of PE
Cy—B; (516) [—Bi (6bits) [C: (10 bits) |
|7
T (S16) [5a] Bz Gbits) My (10bits) \
i ; : Inside
! 7-bit adder 5 : of PE
W, (FP4) Bw| | [Bw, [Mw,] |

-
3 bits 2 bits
(b) mpFPMA PE with Correction Advancing.

Figure 12: Comparison of different designs of mpFPMA.

this double-adder structure requires wide datapaths and substantial
logic replication in every PE. In contrast, with Correction Advanc-
ing, as depicted in Figure 12b, the activation A is combined with
—B; + Cq in a 15-bit adder outside the systolic array. The result is
a precomputed value T, which is passed along a row of PEs. Each
PE then adds T to the aligned Wy using only a 7-bit adder, which is
sufficient for E3M2 weights and FP16 activations (E5M10).

5.3.2 Normalization Postponing. Floating-point additions in
traditional GEMM architectures typically include in-PE normal-
ization to maintain accuracy. However, this approach introduces
significant area and delay due to operations like leading-zero detec-
tion (LZD), bit shifting, and rounding. Inspired by [14, 23], AxCore
postpones normalization to a shared Norm module outside the PEs,
and keeps Ny, + 2 bit-width mantissa (where Ny, is the activation
mantissa width) to maintain numerical accuracy and additional
integer bits needed to prevent overflow. Each PE accumulates par-
tial results without normalization, producing intermediate sums
composed of separate fields (sign, exponent, integer, fraction), as
shown in Figure 11a. These results are passed to the Norm module,
where a pipelined normalization process finalizes the output. This
includes components such as Abs, LZD, Cmp, and Round, as shown
in Figure 11c. Offloading normalization from each PE to a shared
module reduces logic duplication by a factor of n in an n X n array,
enhancing scalability and energy efficiency.

5.3.3 FPMA-based Dequantization. Group-wise quantization
requires each output channel to be scaled by a floating-point scaling
factor. Rather than using a multiplier, AxCore implements this de-
quantization using FPMA, forming the basis of the AxScale module.
After accumulation, the output Oy is dequantized as:

0=04+S-B+C; (17)

where S is the binary representation of the scale factor, B is the
format-specific bias, and Cy is a compensation constant. This design

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Weight J l l
ei
Buf%er - | Tile _D_) Tile
]
. < Ty T
. ot
§ | | Unified &5 Tile —L|—> Tile
Buffer
=] T |
¥ 2
A [Norm |
Vector v 2
Unit || Accum [; AxScale 4 |
Buffer
CTRL > Accumulator |

Figure 13: Architecture of AxCore-based LLM Accelerator.

reduces the dequantization logic to two integer additions, enabling
low-cost scaling in the post-processing pipeline.

5.4 AxCore-Powered LLM Inference Accelerator

Figure 13 illustrates the full system architecture of the AxCore-
based LLM inference accelerator. Similar to existing accelerators [22,
40], the design is organized around a tightly integrated GEMM
pipeline optimized for quantized models. At the core of the accel-
erator lies the GEMM Unit (AxCore), structured as a 2D array of
processing Tiles, each composed of multiple mpFPMA PEs. To pre-
pare data for computation, a Weight Buffer stores quantized model
weights, while a Unified Buffer handles activations and intermedi-
ate data. The architecture also includes a Vector Unit, which assists
with layer-wise vector operations, and a Control Unit (CTRL) that
orchestrates the instruction scheduling and data flow. Data com-
munication with off-chip DRAM is managed through the memory
interface linked to the buffers. This modular and systolic-friendly
design allows AxCore to efficiently support large-scale transformer
inference under low-bit quantization.

6 Evaluation
6.1 Experimental Setup

6.1.1 Accuracy Evaluation Setup. We evaluate AxCore and

baseline designs on two widely used LLM families: OPT and LLaMA2.
All models are quantized to 4-bit using established weight-only

quantization methods [12], with group sizes of 128 for OPT and

64 for LLaMA2 [11, 15, 29]. For block-wise adaptive format quanti-
zation, a small calibration set from the Pile dataset [16] is used to

prevent overfitting. The block size is set to 128 X 64 for OPT and

64 x 64 for LLaMA2. Following prior work [22, 40], we evaluate

model performance on WikiText-2 [34] using perplexity (PPL) with

a sequence length of 2048, where lower values indicate better accu-
racy. Additionally, for zero-shot evaluation, we use four benchmark
datasets: ARC-e [8], HellaSwag [52], PiQA [4], and Winogrande [2],
evaluated via the Im-eval-harness framework [17].

6.1.2 Hardware Evaluation Setup. To assess hardware efficiency,
we implement AxCore in SpinalHDL [13] and synthesize the gen-
erated Verilog RTL using Synopsys Design Compiler with 28nm
TSMC technology node. All designs are synthesized under the
same target frequency (1GHz) and normalized to deliver equal peak
throughput measured in TOPS. For a fair comparison, baseline and
AxCore designs share a 64 X 64 systolic array configuration with 4 X

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

= Mul Add [SNC BX Others
1.0 Wa- Wa- Wa- WS- WS- WS-
S os FPl6 @ BFl6 FP32 FP16 BF16 FP32
L V.
—
<
o0
*|8s : 3 23 A
= S o =]
< 0.4 e S en a Sen
g AN, S Yo Qo S oo N,
8 S o= S Um— o= s ho—o
: S ymE=a = ‘o
Z 0.2 S ?<5C5g- S = ’ S=
|72 <y 1 1 s A 7
LLETEL DL PR LETEL VRV T
Tlo<<ee <EgluagcE gl glucgE 2lug<E R
EZZ2SEZ52335|825235|52533|52528|E2428
L= % SO EEOX| EE0OX| EROX| m=20O%
=< =< =< =< =< =<

Figure 14: Normalized area breakdown of processing element
(PE) under different formats.

4 tilings. To explore performance across various precision settings,
we define evaluation scenarios spanning combinations of weight
types (INT4, FP4, INT8, FP8) and activation formats (FP16, BF16,
FP32). We develop a simulator based on the open-source cycle-level
simulator DNNWeaver [44] to evaluate performance. The SRAM
module’s power is simulated using CACTI [37]. All the accelerator
designs are configured with identical SRAM sizes.

6.1.3 Baselines. We compare AxCore against four representa-
tive GEMM accelerator baselines: a floating-point GEMM core
(FPC) [22], FPMA, FIGNA [22], FIGLUT [40] and Tender [25]. FPC:
Uses standard floating-point fused-multiply-add (FMA) units in
each PE, with FP32 accumulators, aligning with FIGNA and FIGLUT
configurations. FPMA: Replaces FP multipliers with original FPMA
logic. Use FP16/BF16 adders for FP16/BF16 activations and FP32
adders for FP32 activations for in-PE accumulation. FIGNA: A
state-of-the-art FP-INT mixed-precision GEMM unit designed for
weight-only quantized LLMs. FIGLUT: A state-of-the-art LUT-
based FP-INT GEMM design for LLMs. Tender: A state-of-the-art
INT-based non-mix-precision GEMM design for LLMs.

6.2 Area Efficiency

6.2.1 Area Efficiency of mpFPMA PEs. Figure 14 presents the
normalized area breakdown of a single PE under six data type con-
figurations. The breakdown includes multiplication logic, addition
logic, subnormal number conversion (SNC), and other components.
FIGLUT lacks detailed component data, so its area is grouped under
“Others” Among all designs, FPC incurs the highest area due to
costly floating-point units, while FPMA reduces multiplier area via
approximation. AxCore achieves the smallest PE area across all for-
mats, attributed to its mpFPMA design that eliminates multipliers.
Compared to FIGLUT, AxCore reduces PE area by up to 34% in the
W4-FP32 case, and by 31% and 22% in the W4-FP16 and W4-BF 16
configurations, respectively. Compared to FIGNA, AxCore reduces
PE area by 32%-39% in 4-bit formats and 43%-56% in 8-bit formats.
Notably, the SNC unit in AxCore introduces minimal overhead,
accounting for only 3.5% of the total PE area on average.

6.2.2 AreaEfficiency Across GEMM Designs. Figure 15 presents
the normalized area breakdown of the GEMM unit across different
designs and data formats. The area breakdown is categorized into
two types: the array composed of all PEs, and Others, which con-
sist of various pre-processing and post-processing modules located

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

[_ PEs [Others]

1.0 T

W4-FP16] BT W4-BF16] BT W4-FP32 |

0.51

0.28) 75

o
o

0.130.14 0.09

Ws-FP16] B! W8—BF16[| B WS8-FP32 |

0.50 0.4

o ==
o oo

L

Normalized Area

0.220.21

<
o

o
<
FPC

9]
|-
—

FPC

<
=
e
=

= < =
) S)
— a .|
[} [O

<
=
[
)

3] < [—~ o
<Zt 3 Z 13 <ZCD 5
O &) 6] O o 2 O
= % = = = 0O %
= = < m;«:

FI
A
F

Figure 15: Normalized area breakdown of the GEMM unit
under six input format configurations, decomposed into the
PE array and shared modules (Others).

along the data path for activations. AxCore consistently achieves
the lowest area across all settings, outperforming both FIGNA and
FIGLUT. In 4-bit weight scenarios, AxCore reduces total area by
31%, 26%, and 34% compared to FIGLUT for W4-FP16, W4-BF 16,
and W4-FP32, respectively, and by 37%, 36%, and 29% compared to
FIGNA. In 8-bit settings, AxCore achieves an average area reduction
of 25% over FIGLUT and over 55% compared to FIGNA.

6.3 Compute Density

Figure 16 presents the normalized compute density (TOPS/mm?) of
the GEMM array across six input format configurations, focusing
on the PE array and excluding final accumulation stages. Results are
normalized to the conventional FP32 design (FPC). AxCore consis-
tently delivers the highest compute density across all formats due to
its compact mpFPMA datapath, multiplier-free design, and central-
ized correction logic. In the W4-FP16 setting, AxCore achieves
a 6.7x improvement over FPC, significantly outperforming
FIGNA (4.0x) and FIGLUT (4.3X). In the W4-FP32 setting, Ax-
Core achieves a 12.5x improvement over FPC and outperforms
FIGNA and FIGLUT by 1.4X and 1.5X, respectively. Similar trends
are observed in other formats: AxCore reaches 5.3x in W4-BF 16,
and 6.2x in W8-FP16. Even in higher-precision configurations like
W8-FP32, AxCore maintains a 10X density gain over FPC.

6.4 Energy Efficiency

Figure 17 presents the normalized energy breakdown and TOPS/W
of AxCore and baseline accelerators across multiple input data types
evaluated on two OPT models (13B and 30B). We measure energy
during the decoding phase with a batch size of 32 and an output
sequence length of 1, which is aligned with baselines [22, 40]. All
designs have been provided with adequate bandwidth. Among all
evaluated configurations, AxCore consistently demonstrates supe-
rior energy efficiency, achieving the lowest energy consumption
and highest TOPS/W. Both FIGNA and FIGLUT show markedly in-
creased energy consumption in 8-bit scenarios: FIGNA’s multiplier
overhead scales quadratically with computational bit-width, while
FIGLUT’s bit-serial architecture necessitates extended computa-
tion cycles, increasing energy expenditure. On average, AxCore

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

{ FPC XXXJFPMA K&XX FIGNA E== FIGLUT B AxCore

125
W4-FP16 W4-BF16 W4-FP32
' 10 21 g3
6.7 &3

A S 4.0 4. 33 4.0 3.6 .:::

28 Z 1.9 !

o 1.0 1.0 Lo N B

= ol 2
310

8 [ws-FPI6 WS8-BF16

= 6.2

= 4.8 5.0 5.3

3

Z o &l 22

0,
Figure 16: Normalized compute density (TOPS/mm?) of the
GEMM array across six input format configurations.

achieves averaged 2.2x, 1.5%, 1.1x and 1.3X total energy re-
duction and 6.4%, 3.1%, 1.4X and 2.0x TOPS/W improvement
over FPC, FPMA, FIGNA, and FIGLUT, respectively.

6.5 Accuracy Evaluation

6.5.1 End-to-end model accuracy. Table 2 compares the per-
plexity of AxCore against baseline accelerators. It also shows an
ablation study of our optimizations: subnormal number conver-
sion (SNC), constant compensation and format-aware quantization.
FPMA uses FP4 round-to-nearest quantization; FIGNA is evaluated
using GPTQ quantization [15]; and FIGLUT results are from its
published paper [40]. All methods employ symmetric quantization,
with a group size of 128 for OPT models and 64 for LLaMA 2 models.
Since FIGNA and FIGLUT do not quantize the attention layers, the
accuracy reflects linear layer quantization. As shown in Table 2,
AxCore consistently delivers competitive or superior perplexity
across model sizes. For OPT models (2.7B to 30B), AxCore matches
or outperforms existing 4-bit accelerator designs, achieving the
lowest perplexity in cases such as OPT-6.7B and OPT-13B. Similarly,
on LLaMA 2 models (7B and 70B), AxCore maintains accuracy
close to FP16 and performs better than FIGNA and FPMA.

6.5.2 KV cache quantization. Alongside linear layers, attention
mechanisms are key to LLM inference. To support end-to-end infer-
ence on AxCore, we quantize the KV cache to 4 bits with a group
size of 64 along the accumulation dim. For OPT models, we use E1M2
for the K cache and E3M@ for the V cache; for LLaMA2 models, E2M1
is used for the K cache and E3M® for the V cache. The state-of-the-
art integer-only accelerator Tender [25] applies weight-activation
quantization with chunking and reordering to deal with outliers in
activation and KV cache. The results in Table 2 show that AxCore
achieves better accuracy for end-to-end LLM inference compared to
Tender. Furthermore, we observe that the choice of data format in
KV quantization significantly affects accuracy, making data format
calibration for KV cache a valuable future direction.

6.5.3 Accuracy improvement breakdown. Table 2 also high-
lights how AxCore’s design features improve accuracy. Starting
from mpFPMA (only use E2M1 format without constant compensa-
tion and SNC), we observe higher perplexity (e.g., 11.83 on OPT-
6.7B). Adding SNC (mpFPMA+S) reduces perplexity (11.45), show-
ing the benefit of subnormal number conversion. The introduction

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Table 2: Perplexity comparison across OPT and LLaMA 2 mod-
els. mpFPMA: base mpFPMA; mpFPMA+S: mpFPMA + SNC;
mpFPMA+S+C: mpFPMA + SNC + compensation; AxCore:
mpFPMA + SNC + compensation + format-aware quantiza-
tion; AxCore-KV: AxCore + KV cache quantization.

Method Bits OPT (Perplexity) LLaMA 2
W/A/KV | 27B 67B 13B 30B | 7B 70B
FP16 16/16/16 | 12.47 10.86 10.13 9.56 | 5.47 3.32
INT4 4/16/16 1341 11.28 10.55 9.95 | 5.78 3.51
FP4 4/16/16 1297 11.10 10.40 9.82 | 5.70 3.46
FPMA 4/16/16 1340 1137 10.56 9.93 | 5.82 3.53
mpFPMA 4/16/16 13.83 11.83 10.80 9.99 \ \
mpFPMA+S 4/16/16 13.24 1145 1049 9.86 \ \
mpFPMA+S+C | 4/16/16 13.12 11.14 10.25 9.74 \ \
FIGNA [22] 4/16/16 12.87 11.04 10.23 9.62 | 5.69 342
FIGLUT [40] 4/16/16 | 12.73 11.08 10.33 9.70 \ \
AxCore 4/16/16 12.87 11.01 10.20 9.60 | 5.65 3.40
AxCore-KV 4/16/4 \ 11.18 10.59 9.79 | 5.82 3.48
Tender [25] 8/8/4 \ 1451 1333 1449 | \ \
Tender [25] 4/4/4 \ 17.09 2191 2139 | \ \

Table 3: Zero-shot performance on four benchmark datasets.
Higher scores indicate better accuracy.

Model Method | Arc-e Hella. Piga Wino. Avg(])
FP16 82.03 84.13 8286 78.61 81.91
LLaMA2 INT4 81.31 83.37 82.37 78.37 81.36
70B FP4 81.99 83,50 8259 7837 81.61
AxCore | 82.11 83.79 82.59 78.61 81.78
FP16 6536 7231 7818 68.35 71.05
OPT INT4 63.97 7143 7824 67.40 70.26
30B FP4 65.03 71.63 7797 67.01 70.41
AxCore | 64.86 72.08 78.07 68.03 70.76

of constant compensation (mpFPMA+S+C) further improves accu-
racy (11.14). AxCore further combines the two optimizations with
format-aware quantization, achieving the best results among 4-bit
designs (e.g., 11.01 on OPT-6.7B, 5.65 on LLaMA 2 7B). In addition,
applying KV cache quantization (AxCore-KV) introduces minimal
accuracy loss (e.g., 11.18 on OPT-6.7B).

6.5.4 Zero-shot performance. We also evaluate AxCore on four
standard zero-shot benchmark datasets (ARC-e [8], HellaSwag [52],
Piqa [4], and Winogrande [2]), using the Im-eval-harness frame-
work [17]. Table 3 summarizes the results. For the LLaMA2 70B
model, AxCore achieves an average accuracy of 81.78%, which
is comparable to the FP16 baseline (81.91%) and outperforms
both INT4 (81.36%) and FP4 (81.61%) quantization implementa-
tions. Across individual benchmarks, AxCore maintains consistent
performance. For the OPT 30B model, AxCore attains an average
accuracy of 70.76%, which is close to the FP16 baseline (71.05%).

6.5.5 Numerical accuracy. We evaluate AxCore’s numerical ac-
curacy with Signal-to-Noise Ratio (SNR) as the metric, which is
defined as the ratio of exact matrix multiplication power to approx-
imation noise power in decibels [9]. Higher SNR indicates better
preservation of both magnitude and direction in the approximate
results. We test fan-in values from 128 to 32,768, which are typical

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

[- Core B8 Buffer Dram 74 Static
1.0 W4-FP16 ‘W4-BF16 ‘W4-FP32 WS8-FP16 WS8-FP32 Average
a o
%>30,8 S S _ S
=4 g s 2
@ I] = -
0.6/ MME < 2 % nE
= X] 3
E iills 7 - ! Bl | HE
=5 0.4 [1 A A0 U0 W K © 8w ae § =
g NINIY N N R
a Lk 0 i
0.0 gl 2 %

>
8.4

9.3
8.4

9.3

=

Normalized TOPS/W
w

@ FIGLUT
AxCore
AxCore

=]
£ FIGLUT

=]
<
=
=

1.0
2.0
4.6
3.3
6.4

O<L<E 2
-9
=2E3¢
=20z
59

Average

Figure 17: Normalized energy of AxCore and baseline accelerator designs across various data formats and model configurations.

mpFPMA mpFPMA+S B® mpFPMA+S(-SR)+C HH mpFPMA+S+C]

A A
8192 32768
Matrix Size

512 2048

Matrix Size

Figure 18: Signal to Noise Ratio (SNR) analysis of AxCore.

mpFPMA: base mpFPMA; S: subnormal number conversion
(SNC); C: compensation; SR: stochastic rounding.

for LLMs, using uniformly distributed input data. Figure 18 shows
that SNC consistently improves SNR across all tested matrix sizes.
Combining SNC with compensation provides additional gains. Sto-
chastic rounding offers normal accuracy improvement at negligible
cost, though ineffective for E2M1 format as its subnormal numbers
can be exactly mapped to normalized representations.

6.6 Comparison with Non-mpGEMM Designs

To demonstrate the advantage of AxCore’s mixed-precision design
with high-precision activations, we compare it to the integer-only
accelerator Tender [25]. As shown in Figure 19, AxCore (W4A16KV4)
achieves higher compute density and superior accuracy than Ten-
der’s W8A8KV4 and W4A4KV4 configurations. Specifically, Ax-
Core provides 1.72X and 1.86X higher compute density than Tender
W8A8KV4 for FP16 and BF16 activations, respectively, and also
exceeds Tender’s W4A4KV4 density. In terms of accuracy, AxCore
consistently delivers lower perplexity across OPT models. For in-
stance, on OPT-30B, AxCore achieves a perplexity of 9.79, compared
to 14.49 for Tender W8A8KV4 and 21.39 for Tender W4A4KV4.
These results demonstrate that AxCore’s weight-only quantization,
combined with high-precision activations and FPMA, achieves a
better trade-off between efficiency and accuracy.

Tender (WSASKV4) Tender (W4A4KV4) BB AxCore (W4A16KV4)]

o

E 2.0 L86] 25 5

= L72 _ i

[aB}

51s 1.5 12 Enl g

3 § tlIN | =

E 1.0 1 1 § d": 151 = x “ I
MM a7
S 05 N 10 B B
92 ""Fp16 BF16 OPT-6.7B OPT-13B

(a) Compute density comparison (b) Accuracy comparison

Figure 19: Comparision with integer-based non-mix-
precision GEMM accelerator Tender [25].

7 Conclusion

In this paper, we presented AxCore, a quantization-aware approx-
imate GEMM unit that enables efficient mixed-precision matrix
multiplication for LLM inference. By combining floating-point mul-
tiplication approximation (FPMA) with low-bit floating-point quan-
tization, AxCore eliminates multipliers and significantly simplifies
per-PE logic. To the best of our knowledge, AxCore is the first
architecture that exploits the potential of FPMA for LLM inference.
AxCore integrates a set of lightweight yet effective techniques:
subnormal number conversion, mean-based error compensation,
and adaptive format-aware quantization. Evaluations show that
AxCore achieves up to 12.5X higher compute density over FP base-
lines and delivers 50% to 70% area savings over INT4 accelerators
while achieving lower perplexity. While AxCore processes standard
low-bit FP formats, extending it for custom data types [19, 21] or
block-based formats [9] remains a valuable future direction.

Acknowledgments

This work is supported by National Key Research and Develop-
ment Program of China (No. 2024YFB4504200) and the Guangzhou-
HKUST(GZ) Joint Funding Program (No.2025A03]3568). We also
thank the AMD Heterogeneous Accelerated Compute Cluster (HACC)
Program [3] for providing access to hardware resources.

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

References
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

[10

(1

[12

of IEEE 754-2008) (2019), 1-84. https://doi.org/10.1109/IEEESTD.2019.8766229
2019. WinoGrande: An Adversarial Winograd Schema Challenge at Scale.
AMD Xilinx 2025. Heterogeneous Accelerated Compute Cluster (HACC) at NUS.
https://xacchead.d2.comp.nus.edu.sg/.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2020.
PIQA: Reasoning about Physical Commonsense in Natural Language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL] https://arxiv.org/abs/2005.14165

Yonghao Chen, Jiaxiang Zou, and Xinyu Chen. 2025. April: Accuracy-Improved
Floating-Point Approximation For Neural Network Accelerators. In Proceedings
of the 62nd ACM/IEEE Design Automation Conference. 1-6.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and Innovation.
IEEE Micro 41, 2 (2021), 29-35. https://doi.org/10.1109/MM.2021.3061394

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. 2018. Think you have Solved Question Answer-
ing? Try ARC, the AI2 Reasoning Challenge. arXiv:1803.05457v1 (2018).

Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew
Hall, Maral Mesmakhosroshahi, Ankit More, Levi Melnick, Maximilian Golub,
Girish Varatkar, Lai Shao, Gaurav Kolhe, Dimitry Melts, Jasmine Klar, Renee
L’Heureux, Matt Perry, Doug Burger, Eric Chung, Zhaoxia (Summer) Deng, Sam
Naghshineh, Jongsoo Park, and Maxim Naumov. 2023. With Shared Microex-
ponents, A Little Shifting Goes a Long Way. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA °23).
Association for Computing Machinery, New York, NY, USA, Article 83, 13 pages.
https://doi.org/10.1145/3579371.3589351

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,
Chengda Lu, Chenggang Zhao, Chenggi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun
Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong
Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Dy, R. J. Chen, R. L. Jin, Ruigi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wengin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang,
Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao
Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong,
Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Z.F.Wu, Z. Z.Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen
Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma,
Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and
Zizheng Pan. 2024. DeepSeek-V3 Technical Report. (dec 2024). arXiv:2412.19437
http://arxiv.org/abs/2412.19437

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022.
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. In Advances
in Neural Information Processing Systems, Vol. 35. arXiv:2208.07339 http://arxiv.
org/abs/2208.07339

Tim Dettmers and Luke Zettlemoyer. 2023. The case for 4-bit precision: k-bit
inference scaling laws. In Proceedings of the 40th International Conference on
Machine Learning (Honolulu, Hawaii, USA) (ICML’23). JMLR.org, Article 307,
25 pages.

(13

[14

[15

[16

(17

[18

(19]

[20

[21

[22

I
&

[24

[25

[26

[27

[28

[29]

@
=

[31

[32

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Dolu1990. 2017. SpinalHDL : An alternative hardware description language.
Chaos Computer Club eV.. https://doi.org/10.5446/43800

Massimiliano Fasi, Nicholas Higham, Mantas Mikaitis, and Srikara Pranesh. 2021.
Numerical behavior of NVIDIA tensor cores. Peerf Computer Science 7 (02 2021),
€330. https://doi.org/10.7717/peerj-cs.330

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2023. OPTQ: AC-
CURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED
TRANSFORMERS. In 11th International Conference on Learning Representations,
ICLR 2023. arXiv:2210.17323 http://arxiv.org/abs/2210.17323

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The
Pile: An 800GB dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027 (2020).

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi,
Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle
McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang,
Kevin Wang, and Andy Zou. 2021. A framework for few-shot language model
evaluation. https://doi.org/10.5281/zenodo.5371628

Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, and Hao Yu.
2024. APTQ: Attention-aware Post-Training Mixed-Precision Quantization for
Large Language Models. In Proceedings of the 61st ACM/IEEE Design Automation
Conference (DAC "24). ACM, 1-6. https://doi.org/10.1145/3649329.3658498
Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. 2022. ANT: Exploiting Adaptive Numerical Data Type
for Low-bit Deep Neural Network Quantization. In Proceedings of the Annual
International Symposium on Microarchitecture, MICRO, Vol. 2022-Octob. 1414—
1433. https://doi.org/10.1109/MICRO56248.2022.00095 arXiv:2208.14286

Oscar Gustafsson and Noah Hellman. 2021. Approximate floating-point opera-
tions with integer units by processing in the logarithmic domain. In 2021 IEEE
28th Symposium on Computer Arithmetic (ARITH). IEEE, 45-52.

Weiming Hu, Haoyan Zhang, Cong Guo, Yu Feng, Renyang Guan, Zhendong
Hua, Zihan Liu, Yue Guan, Minyi Guo, and Jingwen Leng. 2025. M-ANT: Efficient
Low-bit Group Quantization for LLMs via Mathematically Adaptive Numerical
Type. arXiv:2502.18755 [cs.AR] https://arxiv.org/abs/2502.18755

Jaeyong Jang, Yulhwa Kim, Juheun Lee, and Jae-Joon Kim. 2024. Figna: Integer
unit-based accelerator design for fp-int gemm preserving numerical accuracy. In
2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 760-773.

Yulhwa Kim, Jaeyong Jang, Jehun Lee, Jihoon Park, Jeonghoon Kim, Byeong-
wook Kim, Baeseong Park, Se Jung Kwon, Dongsoo Lee, and Jae Joon Kim. 2023.
WINNING BOTH THE ACCURACY OF FLOATING POINT ACTIVATION AND
THE SIMPLICITY OF INTEGER ARITHMETIC. In 11th International Conference
on Learning Representations, ICLR 2023.

Atli Kosson and Martin Jaggi. 2023. Multiplication-Free Transformer Training
via Piecewise Affine Operations. In Advances in Neural Information Processing
Systems, Vol. 36. arXiv:2305.17190 http://arxiv.org/abs/2305.17190

Jungi Lee, Wonbeom Lee, and Jaewoong Sim. 2024. Tender: Accelerating Large
Language Models via Tensor Decomposition and Runtime Requantization. In
Proceedings of the 51st Annual International Symposium on Computer Architecture.
Jinhao Li, Jiaming Xu, Shiyao Li, Shan Huang, Jun Liu, Yaoxiu Lian, and Guohao
Dai. 2023. Fast and Efficient 2-bit LLM Inference on GPU: 2/4/16-bit in a Weight
Matrix with Asynchronous Dequantization. IEEE/ACM International Conference
on Computer-Aided Design (ICCAD °24), October 27a+fi31, 2024, New York, NY, USA
1(2023). https://doi.org/10.1145/3676536.3676796 arXiv:2311.16442

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen
Yan, Guohao Dai, Huazhong Yang, and Yu Wang. 2024. Evaluating Quantized
Large Language Models. ArXiv abs/2402.18158 (2024). https://api.semanticscholar.
org/CorpusID:268041618

Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, and Priyadarshini Panda.
2025. GPTAQ: Efficient Finetuning-Free Quantization for Asymmetric Calibration.
arXiv preprint arXiv:2504.02692 (2025).

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-
Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song
Han. 2024. AWQ: Activation-aware Weight Quantization for On-Device
LLM Compression and Acceleration. In Proceedings of Machine Learn-
ing and Systems, P. Gibbons, G. Pekhimenko, and C. De Sa (Eds.),
Vol. 6. 87-100. https://proceedings.mlsys.org/paper_files/paper/2024/file/
42a452cbafa9dd64e9badaadscclef21-Paper-Conference.pdf

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang
Gan, and Song Han. 2024. QServe: W4A8KV4 Quantization and System Co-design
for Efficient LLM Serving. arXiv:2405.04532 [cs.CL] https://arxiv.org/abs/2405.
04532

Theodor Lindberg and Oscar Gustafsson. 2024. On Approximate 8-bit Floating-
Point Operations Using Integer Operations. arXiv preprint arXiv:2406.18441
(2024).

Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng Dong, and Kwang-Ting
Cheng. 2023. LLM-FP4: 4-Bit Floating-Point Quantized Transformers. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing,

https://doi.org/10.1109/IEEESTD.2019.8766229
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1145/3579371.3589351
https://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
https://doi.org/10.5446/43800
https://doi.org/10.7717/peerj-cs.330
https://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.1145/3649329.3658498
https://doi.org/10.1109/MICRO56248.2022.00095
https://arxiv.org/abs/2208.14286
https://arxiv.org/abs/2502.18755
https://arxiv.org/abs/2502.18755
https://arxiv.org/abs/2305.17190
http://arxiv.org/abs/2305.17190
https://doi.org/10.1145/3676536.3676796
https://arxiv.org/abs/2311.16442
https://api.semanticscholar.org/CorpusID:268041618
https://api.semanticscholar.org/CorpusID:268041618
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 592-605. https://doi.org/10.18653/v1/2023.emnlp-main.39

[33] Hongyin Luo and Wei Sun. 2024. Addition is all you need for energy-efficient

language models. arXiv preprint arXiv:2410.00907 (2024).

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.

Pointer Sentinel Mixture Models. arXiv:1609.07843 [cs.CL]

[35] John N Mitchell. 1962. Computer multiplication and division using binary loga-

rithms. IRE Transactions on Electronic Computers 4 (1962), 512-517.

Tsuguo Mogami. 2020. Deep Neural Network Training without Multiplica-

tions. ArXiv abs/2012.03458 (2020). https://api.semanticscholar.org/CorpusID:

227340950

[37] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2007). 3-14. https://doi.org/10.1109/MICRO.2007.33

[38] NVIDIA Corporation. 2024. Accuracy Considerations for the In-

ference Library. In NVIDIA TensorRT Developer Guide (10.11.0 ed.).

NVIDIA. https://docs.nvidia.com/deeplearning/tensorrt/10.11.0/inference-

library/accuracy-considerations.html Accessed: 2025-06-15.

NVIDIA Corporation. 2025. NVIDIA TensorRT-LLM: Numerical Precision. https:

//nvidia.github.io/TensorRT-LLM/reference/precision.html.

[40] Gunho Park, Hyeokjun Kwon, Jiwoo Kim, Jeongin Bae, Baeseong Park, Dongsoo
Lee, and Youngjoo Lee. 2025. FIGLUT: An Energy-Efficient Accelerator Design
for FP-INT GEMM Using Look-Up Tables. In 2025 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 1098-1111. https://doi.org/
10.1109/HPCA61900.2025.00085

[41] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang,

Yongwei Wu, Weimin Zheng, and Xinran Xu. 2025. Mooncake: Trading More

Storage for Less Computation — A KVCache-centric Architecture for Serving

LLM Chatbot. In 23rd USENIX Conference on File and Storage Technologies (FAST

25). USENIX Association, Santa Clara, CA, 155-170. https://www.usenix.org/

conference/fast25/presentation/qin

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[43] Ori Schweitzer, Uri Weiser, and Freddy Gabbay. 2024. Enhancing DNN Computa-

tional Efficiency via Decomposition and Approximation. IEEE Access (2024).

Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim,

Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-level deep

neural models to FPGAs. In 2016 49th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). 1-12. https://doi.org/10.1109/MICRO.2016.7783720

[45] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi
Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. FlexGen:
high-throughput generative inference of large language models with a single
GPU. In Proceedings of the 40th International Conference on Machine Learning
(Honolulu, Hawaii, USA) (ICML’23). JMLR.org, Article 1288, 23 pages.

[46] Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri Weiser. 2021. Post-training
sparsity-aware quantization. Advances in Neural Information Processing Systems
34 (2021), 17737-17748.

[47] Jiaming Tang, Cong Guo, Jingwen Leng, Yunxin Liu, Chen Zhang, Minyi Guo,
Weiming Hu, Fan Yang, and Yuhao Zhu. 2023. OliVe: Accelerating Large Lan-
guage Models via Hardware-friendly Outlier-Victim Pair Quantization. In Proceed-
ings - International Symposium on Computer Architecture. Institute of Electrical
and Electronics Engineers Inc., 33-47. https://doi.org/10.1145/3579371.3589038
arXiv:2304.07493

[48] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-

ple. 2023. LLaMA: Open and Efficient Foundation Language Models. ArXiv

abs/2302.13971 (2023). https://api.semanticscholar.org/CorpusID:257219404

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin

Zheng, Ziming Miao, Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. 2024.

LADDER: Enabling Efficient Low-Precision Deep Learning Computing through

Hardware-aware Tensor Transformation. In Proceedings of the 18th USENIX Sym-

posium on Operating Systems Design and Implementation, OSDI 2024. 307-323.

https://www.usenix.org/conference/osdi24/presentation/wang-lei

Jianyu Wei, Shijie Cao, Ting Cao, Lingxiao Ma, Lei Wang, Yanyong Zhang, and

Mao Yang. 2024. T-MAC: CPU Renaissance via Table Lookup for Low-Bit LLM

Deployment on Edge. (jun 2024). arXiv:2407.00088 http://arxiv.org/abs/2407.

00088

[51] Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. 2022.
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Lan-
guage Models. ArXiv abs/2211.10438 (2022). https://api.semanticscholar.org/
CorpusID:253708271

[52] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019.

HellaSwag: Can a Machine Really Finish Your Sentence?. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuo-

hui Chen, Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor

[34

[36

[39

[42

[44

[49

[50

[53

Jiaxiang Zou, Yonghao Chen, Xingyu Chen, Chenxi Xu, and Xinyu Chen

Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura,
Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-
trained Transformer Language Models. ArXiv abs/2205.01068 (2022). https:
//api.semanticscholar.org/CorpusID:248496292

Yu Zhang, Mingzi Wang, Lancheng Zou, Wulong Liu, Hui-Ling Zhen, Mingxuan
Yuan, and Bei Yu. 2024. MixPE: Quantization and Hardware Co-design for
Efficient LLM Inference. arXiv:2411.16158 [cs.LG] https://arxiv.org/abs/2411.
16158

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze,
Arvind Krishnamurthy, Tiangi Chen, and Baris Kasikci. 2023. Atom: Low-bit
Quantization for Efficient and Accurate LLM Serving. (oct 2023). arXiv:2310.19102
http://arxiv.org/abs/2310.19102

[54

[55

A Artifact Appendix
A.1 Abstract

This artifact contains the necessary components to reproduce the
key results of this paper. It includes: (1) The SpinalHDL RTL code
for the AxCore hardware design; (2) Evaluation scripts for Large
Language Model (LLM) accuracy; (3) A cycle-accurate simulator for
end-to-end performance evaluation. These components facilitate
the full reproduction of data shown in Table 2, Table 3, Figure 2
and Figure 17.

A.2 Artifact check-list (meta-information)
e Compilation: NVCC 12.4, GCC 11.4.0.

e Model: OPT-2.7B, OPT-6.7B, OPT-13B, OPT-30B, LLaMA2-7B, LLaMA2-

70B.

o Data set: WikiText-2, ARC-e, HellaSwag, PiQA, Winogrande, Pile.

Run-time environment: Ubuntu 22.04.5 LTS, CUDA 12.4, and

PyTorh 2.5.1.

e Hardware: A server with an x86 processor and four NVIDIA RTX
6000 Ada GPUs.

e Output: Model perplexity and accuracy, simulator energy and

performance.

How much disk space required (approximately)?: About 270GB.

How much time is needed to prepare workflow (approxi-

mately)?: It takes about 30 minutes to prepare the environment.

o How much time is needed to complete experiments (approx-
imately)?: It takes approximately 230 hours to execute all ex-
periments using the server equipped with GPUs. The most time-
consuming experiment requires about 90 hours and about 550GB
cpu memory to finish.

o Publicly available?: Yes.

o Code licenses (if publicly available)?: Not specified.

o Data licenses (if publicly available)?: The datasets are publicly

available through their original licensing terms.

Workflow automation framework used?: Conda, shell scripts.

o Archived (provide DOI)?: https://doi.org/10.5281/zenodo.16895417.

A.3 Description

A.3.1 How to access. We archive the source code at https://doi.org/
10.5281/zenodo.16895417. We recommend you access our GitHub
repository https://github.com/CLab-HKUST-GZ/micro58-axcore
for the latest version.

A.3.2 Hardware dependencies. We evaluate the models with our
server equipped with four NVIDIA RTX 6000 Ada GPUs (48GB).

A.3.3 Software dependencies. The experiments rely on the follow-
ing software components.

e Ubuntu 22.04.5 LTS

e Python 3.9

https://doi.org/10.18653/v1/2023.emnlp-main.39
https://arxiv.org/abs/1609.07843
https://api.semanticscholar.org/CorpusID:227340950
https://api.semanticscholar.org/CorpusID:227340950
https://doi.org/10.1109/MICRO.2007.33
https://docs.nvidia.com/deeplearning/tensorrt/10.11.0/inference-library/accuracy-considerations.html
https://docs.nvidia.com/deeplearning/tensorrt/10.11.0/inference-library/accuracy-considerations.html
https://nvidia.github.io/TensorRT-LLM/reference/precision.html
https://nvidia.github.io/TensorRT-LLM/reference/precision.html
https://doi.org/10.1109/HPCA61900.2025.00085
https://doi.org/10.1109/HPCA61900.2025.00085
https://www.usenix.org/conference/fast25/presentation/qin
https://www.usenix.org/conference/fast25/presentation/qin
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1145/3579371.3589038
https://arxiv.org/abs/2304.07493
https://api.semanticscholar.org/CorpusID:257219404
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://arxiv.org/abs/2407.00088
http://arxiv.org/abs/2407.00088
http://arxiv.org/abs/2407.00088
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://arxiv.org/abs/2411.16158
https://arxiv.org/abs/2411.16158
https://arxiv.org/abs/2411.16158
https://arxiv.org/abs/2310.19102
http://arxiv.org/abs/2310.19102
https://doi.org/10.5281/zenodo.16895417
https://doi.org/10.5281/zenodo.16895417
https://doi.org/10.5281/zenodo.16895417
https://github.com/CLab-HKUST-GZ/micro58-axcore

AxCore: A Quantization-Aware Approximate GEMM Unit for LLM Inference

e PyTorch 2.5.1
e Conda 25.1.1
e GCC11.4.0

e CUDA 12.4

e Cacti 7.0

A.3.4 Data sets. We evaluate perplexity on the WikiText-2 dataset.
For zero-shot evaluations, we employ a suite of benchmarks, in-
cluding ARC-e, HellaSwag, PiQA, and Winogrande. Additionally,
the Pile dataset is used during the calibration of AxCore to mitigate
overfitting.

A.3.5 Models. We evaluate a suite of foundation models from the
Hugging Face Hub. For perplexity measurements, we use OPT-2.7B,
OPT-6.7B, OPT-13B, OPT-30B, LLaMA2-7B, and LLaMA2-70B. For
the zero-shot performance evaluation, we then focus on the two
largest models: OPT-30B and LLaMA2-70B.

A.4 Installation

We have well-documented README files to detail the installa-
tion instruction for each experiment at https://github.com/CLab-
HKUST-GZ/micro58-axcore.

A.5 Experiment workflow

The artifact evaluation is split into three main parts, each designed
to reproduce a specific set of results from the paper.
1. Functional verification of AxCore hardware:
(1) Please follow the detailed instructions provided in the file
Hardware/AxCore/README . md.

2. Evaluation of LLM accuracy (reproduces Table 2 and
Table 3):

(1) Create the Environment: Set up the Conda environment
by following the instructions at https://github.com/CLab-
HKUST-GZ/micro58-axcore/tree/main/Software/AxCore.

(2) Execute evaluation: Run the corresponding shell script
for each table. The script will automatically download the
required models and datasets from the Hugging Face Hub
(if not cached) and then perform the AxCore evaluation.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

3. Performance of the AxCore simulator (reproduces Fig-
ure 17):

(1) Create the Environment: Set up the Conda environment as
instructed at https://github.com/CLab-HKUST-GZ/micro58-
axcore/tree/main/Software/axcore_simulator.

(2) Run Simulator and plot results: Execute the provided
script to run all simulations. The final plot will be generated
as results/fig_17.pdf.

4. Gemm operations percentage (reproduces Figure 2) (op-

tional):

(1) Calculate Workload Distribution: Run the profiling script
to analyze the computational workload.

(2) Generate Visualization: Create the visualization chart.
This generates figure2.pdf in the current directory.

A.6 Evaluation and expected results

Our experiments have three major parts: the evaluation of AxCore
hardware design, the evaluation of LLM accuracy and the perfor-
mance of the AxCore simulator.
e Hardware/AxCore: Contains all components for hardware
design and functional verification.
e Software/AxCore: Contains the PyTorch-based framework
for LLM accuracy evaluation.
e Software/axcore_simulator: Contains the cycle-accurate
simulator for performance and energy evaluation.
e Profile: Contains the gemm operations percentage of OPT
and LLaMA models across various sequence lengths.
To run these experiments, please consult the README . md file in each
directory for detailed guidance. For verification, we have included
the expected results for Table 2, Table 3, Figure 2 and Figure 17
within these README files.

A.7 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-and-

badging-current
e https://cTuning.org/ae

https://github.com/CLab-HKUST-GZ/micro58-axcore
https://github.com/CLab-HKUST-GZ/micro58-axcore
https://github.com/CLab-HKUST-GZ/micro58-axcore/tree/main/Software/AxCore
https://github.com/CLab-HKUST-GZ/micro58-axcore/tree/main/Software/AxCore
https://github.com/CLab-HKUST-GZ/micro58-axcore/tree/main/Software/axcore_simulator
https://github.com/CLab-HKUST-GZ/micro58-axcore/tree/main/Software/axcore_simulator
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background
	2.1 GEMM in LLM Inference
	2.2 Weight-only Quantization
	2.3 Quantization-Aware GEMM
	2.4 FP Multiplication Approximation with Integer Addition (FPMA)

	3 Adopting FPMA for Quantized LLM Inference
	3.1 Challenges
	3.2 Our Solution – AxCore

	4 Accuracy-Preserved mpFPMA for LLM
	4.1 Extending FPMA to mpFPMA
	4.2 Handling Subnormal Numbers in mpFPMA
	4.3 Error Compensation for mpFPMA
	4.4 Adaptive Format-Aware Quantization

	5 AxCore Architecture
	5.1 Overview
	5.2 mpFPMA Processing Elements
	5.3 Systolic Array Optimizations
	5.4 AxCore-Powered LLM Inference Accelerator

	6 Evaluation
	6.1 Experimental Setup
	6.2 Area Efficiency
	6.3 Compute Density
	6.4 Energy Efficiency
	6.5 Accuracy Evaluation
	6.6 Comparison with Non-mpGEMM Designs

	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

