
Clementi: Efficient Load Balancing and Communication
Overlap for Multi-FPGA Graph Processing

FENG YU, National University of Singapore, Singapore
HONGSHI TAN, National University of Singapore, Singapore
XINYU CHEN, The Hong Kong University of Science and Technology (Guangzhou), China
YAO CHEN∗, National University of Singapore, Singapore
BINGSHENG HE, National University of Singapore, Singapore
WENG-FAI WONG, National University of Singapore, Singapore

Efficient graph processing is critical in various modern applications, such as social network analysis, recom-
mendation systems, and large-scale data mining. Traditional single-FPGA systems struggle to handle the
increasing size and complexity of real-world graphs due to limitations in memory and computational resources.
Existing multi-FPGA solutions face significant challenges, including high communication overhead caused by
irregular data transfer patterns and workload imbalances stemming from skewed graph distributions. These
inefficiencies hinder scalability and performance, highlighting a critical research gap. To address these issues,
we introduce Clementi, an efficient multi-FPGA graph processing framework that features customized fine-
grained pipelines for computation and cross-FPGA communication. Clementi uniquely integrates an accurate
performance model for execution time prediction, enabling a novel scheduling method that balances workload
distribution and minimizes communication overhead by overlapping communication and computation stages.
Experimental results demonstrate that Clementi achieves speedups of up to 8.75× compared to state-of-the-art
multi-FPGA designs, indicating significant improvements in processing efficiency as the number of FPGAs
increases. This near-linear scalability underscores the framework’s potential to enhance graph processing ca-
pabilities in practical applications. Clementi is open-sourced at https://github.com/Xtra-Computing/Clementi.

CCS Concepts: • Hardware→ Reconfigurable logic and FPGAs; • Computer systems organization→
Data flow architectures; • Computing methodologies→ Parallel algorithms.

Additional KeyWords and Phrases: Multi-FPGA graph processing, load balancing, communication overlapping.

ACM Reference Format:
Feng Yu, Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, and Weng-fai Wong. 2025. Clementi: Efficient
Load Balancing and Communication Overlap for Multi-FPGA Graph Processing. Proc. ACM Manag. Data 3, 3
(SIGMOD), Article 138 (June 2025), 27 pages. https://doi.org/10.1145/3725275

1 Introduction
Graph representations are pivotal for myriad applications, including data science, machine learning,
social networks, roadmaps, and genomics, as they succinctly depict the inherent relationships
between distinct entities [18]. This has prompted the development of various platforms for graph
∗Corresponding author.

Authors’ Contact Information: Feng Yu, National University of Singapore, Singapore, yuf@u.nus.edu; Hongshi Tan, National
University of Singapore, Singapore, hongshi@u.nus.edu; Xinyu Chen, The Hong Kong University of Science and Technology
(Guangzhou), Guangzhou, China, xinyuchen@hkust-gz.edu.cn; Yao Chen, National University of Singapore, Singapore,
yaochen@nus.edu.sg; Bingsheng He, National University of Singapore, Singapore, hebs@comp.nus.edu.sg; Weng-fai Wong,
National University of Singapore, Singapore, wongwf@comp.nus.edu.sg.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2836-6573/2025/6-ART138
https://doi.org/10.1145/3725275

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

https://github.com/Xtra-Computing/Clementi
https://doi.org/10.1145/3725275
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725275

138:2 Feng Yu et al.

Input Graph

(1) Graph Partition

FPGA 2FPGA 1

FPGA 1

Processing

Communication

Idle

FPGA 2

Timeline

Iteration

IdleProcessing

CommunicationSubgraph 1 Subgraph 2

Network / PCIe

(2) Assign

Multi-FPGA architecture

(3) Execution on Multi-FPGA

1 5

3 4

2 3

1 2

2 1

1 3

Computation

Fig. 1. Simplified graph processing workflow on a multi-FPGA platform.

processing and analysis, including CPU-based designs [8, 17, 29, 30, 47, 57], GPU-based designs [15,
23, 28, 43, 45, 55], and FPGA-based designs [3, 10–13, 19, 42, 56]. Owing to its inherent attributes
such as reconfigurability, fine-grained parallelism, and energy efficiency, FPGA emerges as a highly
promising option for accelerating graph analytics in datacenters [36, 46].
As the size of real-world graphs continues to grow at an unprecedented rate, traditional graph

processing techniques are insufficient to handle the scale of data [16, 27, 40]. Specifically, the
resource limitations of a single FPGA board become apparent, such as the on-chip block RAM
and the on-board DDR memory. As a result, current approaches explore distributed designs that
leverage multiple FPGAs with graph partition methods, demonstrating impressive performance in
graph processing with multiple FPGAs [13, 14, 39, 48, 53].
Graph processing on multi-FPGA commonly (1) partitions input graph data into several sub-

graphs, (2) assigns partitioned subgraphs to each FPGA, and (3) executes graph analysis over
the multi-FPGA architecture, which includes both computation and communication stages. As
shown in Figure 1, using the widely-used graph processing application PageRank as an example,
each FPGA retains its assigned subgraphs in its own memory. During processing iterations, each
FPGA processes its assigned edge list, computing the sum of vertex properties for each destination
vertex to derive new properties. Subsequently, a communication stage updates these new vertex
properties across all FPGAs. A global synchronization barrier at the end of each iteration ensures
data consistency in a multi-FPGA scenario.
However, current multi-FPGA designs suffer from poor scale-out performance due to the fol-

lowing problems: Firstly, the synchronization barrier caused by the global update prevents the
overlapping of the communication and computation process in different FPGAs. This can be
observed in designs such as ForeGraph [13] and GraVF-M [14], where the FPGAs require synchro-
nization after the assigned subgraphs have been processed. Secondly, skewed graph data distribution
leads to an imbalanced workload, resulting in FPGA under-utilization and thus undermining the
overall scalability in a multi-FPGA environment.
For a detailed analysis, we profiled ForeGraph [13], a state-of-the-art example. In Figure 2, we

define the Normalized System Runtime as the sum of normalized computation time and commu-
nication time. To provide a more detailed breakdown, we introduce Total Active PE Time, which
represents the cumulative processing time required if all processing elements (PEs) were fully uti-
lized. The Idle Time represents the periods when PEs are underutilized due to workload imbalance,
and Communication Time represents the overhead caused by data transfers between FPGAs. The
results reveal that when using four FPGAs for the TW dataset [24] (41.6 million vertices and 1.47
billion edges), ForeGraph incurs a significant communication overhead, which accounts for up to

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:3

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 S

y
s

te
m

 R
u

n
ti

m
e

1 2 3 4

0.68

0.53

0.42

1 2 3 4

0.9

0.64

0.5

1 2 3 4

0.79

0.54

0.41

1 2 3 4

0.65

0.44

0.34

of FPGAs

G25

of FPGAs

TW

of FPGAs

FR

of FPGAs

UK

Total Active PE Time Communication TimeIdle Time

Fig. 2. System runtime profiling of ForeGraph [13] on varying number of FPGAs.

28% of the total execution time, while there is a 22% increase in computation time due to idle PEs
across FPGAs, resulting in a 50% overall performance degradation.

In this paper, we propose Clementi, a multi-FPGA graph processing framework to address these
two critical issues. We first adopt the GAS graph processing model over a multi-FPGA architecture,
selecting the remote-apply pattern to better overlap communication and computation. Based on this
pattern, we customize fine-grained hardware pipelines in each FPGA for the graph computation
and communication stages. Furthermore, we propose an architecture-oriented performance model
that captures the execution behavior of these pipelines for partitioned subgraphs, enabling an
effective scheduling method that assigns partitioned subgraphs to different FPGAs. This method
not only balances execution time across all FPGAs, but also overlaps communication stages with
computation stages, effectively reducing communication overhead. The major contributions of our
proposed method are as follows:
• We build Clementi, a multi-FPGA graph processing framework that achieves efficient load
balancing and communication overlapping, demonstrating significant performance improvements
when scaling out.
• We design fine-grained, customized pipelines that maximize the utilization of off-chip memory
and network bandwidth while enabling communication-computation overlap.
• We develop an effective workload scheduling method to address the load balancing issues of graph
processing among multiple FPGAs. The scheduling is based on a novel architecture-oriented
performance model to capture the execution behavior of different stages in graph processing.
• Clementi delivers the state-of-the-art performance, achieving maximum 19.7 GTEPS, and a
speedup of up to 8.75× when compared to ForeGraph [13] and GraVF-M [14] with the same num-
ber of FPGAs. Clementi also delivers comparable throughput to multi-CPU design Gemini [57]
and multi-GPU design Lux [21], along with superior energy efficiency when scaling out.

2 Preliminary
2.1 GAS Execution Model
The Gather-Apply-Scatter (GAS) model [17, 38] is a widely used framework in graph processing. It
defines three conceptual stages: (1) Gather: properties of adjacent vertices and edges are collected.
(2) Apply: a user-defined function (UDF) computes the new vertex property based on the collected
values from the gather stage. (3) Scatter: the new vertex values are propagated to update the
properties of adjacent vertices. In vertex-centric processing, the GAS model operates by iterating
over all graph vertices and traversing their adjacent edges. In contrast, edge-centric processing
sequentially processes all edges, naturally transitioning into a ’scatter-gather-apply’ (SGA) sequence.
This reordering optimizes memory access patterns by first scattering edge updates to minimize

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:4 Feng Yu et al.

random memory accesses, followed by gathering vertex updates locally for efficient processing.
Following previous works [17, 38], we still name the edge-centric execution model as GAS model,
with the pseudo code in Algorithm 1.
Multi-FPGA execution: When extending the edge-centric GAS model over the multi-FPGA
architecture, two practical processing patterns are identified. 1○ Remote-scatter Pattern: The
current FPGA implements remote accesses to vertex data during the scatter stage, transmitting
only vertex properties not present on the current FPGA while calculating and updating vertex
data locally. 2○ Remote-apply Pattern: Each FPGA stores replicas of the vertex set along with
their associated properties in local memory during the scatter and gather stages and synchronizes
updates to these vertex replicas across FPGAs during the apply stage of each iteration.

Algorithm 1 Edge-centric GAS Model
Input: Edges: edge list. Vertices: vertex set.
Output: NewVertices: calculated vertex set.
Notations: dst: destination vertex of an edge. src: source vertex of an edge. w: weight of the

edge. prop: vertex property. accum: accumulated propagated property for each vertex. value:
propagated vertex property of an update item.

1: while not done do
2: for all 𝑒 ∈ Edges do /* Scatter Stage: Propagate property from src to dst vertices.*/
3: 𝑢 ← new update item
4: 𝑢.𝑑𝑠𝑡 ← 𝑒.𝑑𝑠𝑡

5: 𝑢.𝑣𝑎𝑙𝑢𝑒 ← Scatter(𝑒.𝑤𝑒𝑖𝑔ℎ𝑡, 𝑒 .𝑠𝑟𝑐.𝑝𝑟𝑜𝑝)
6: end for
7: for all 𝑢 ∈ Updates do /* Gather Stage: Aggregate updates at each dst vertex.*/
8: 𝑢.𝑑𝑠𝑡 .𝑎𝑐𝑐𝑢𝑚 ← Gather(𝑢.𝑑𝑠𝑡 .𝑎𝑐𝑐𝑢𝑚,𝑢.𝑣𝑎𝑙𝑢𝑒)
9: end for
10: for all 𝑣 ∈ Vertices do /* Apply Stage: Update vertex prop based on accum.*/
11: 𝑣 .𝑝𝑟𝑜𝑝 ← Apply(𝑣 .𝑝𝑟𝑜𝑝, 𝑣 .𝑎𝑐𝑐𝑢𝑚)
12: end for
13: end while
14: NewVertices← Vertices
15: return NewVertices

Both patterns ensure correct computation results, but differ in how remote vertex access and
data updates are handled. The remote-scatter pattern performs random remote vertex access during
the scatter stage and updates only local vertices during the gather and apply stages. In contrast,
the remote-apply pattern features sequential remote vertex access during the apply stage, while
scatter and gather operations are performed locally.

2.2 Graph Partition
Graph partition plays an important role in FPGA-based graph processing designs [3, 9–13, 19, 34, 42,
56] to realize efficient on-chip memory utilization and massive parallelism. Current graph partition
methods used in FPGA-based graph processing mainly consist of Metis [22] and 2D partition
method [6, 54]. Metis [22] is a widely used graph partition method by reducing cross-cutting edges,
shown in Figure 3(b). It is important to note that Metis relies on heuristic algorithms that may not
always guarantee optimal workload balance. Compared to Metis, the 2D partition method, also
known as edge partition, partitions a large graph into several subgraphs in a two-dimensional

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:5

Destination Vertex

So
u

rce
 V

e
rtex

(a) (b) (c)

Partition 1

Partition 2

4 5 6

1 2 3Partition 1 :

Partition 2 :

Partitioned Vertex Set

(a) Original graph

Destination Vertex

So
u

rce
 V

e
rtex

(a) (b) (c)

Partition 1

Partition 2

4 5 6

1 2 3Partition 1 :

Partition 2 :

Partitioned Vertex Set

(b) Metis partition method

Destination Vertex

So
u

rce
 V

e
rtex

(a) (b) (c)

Partition 1

Partition 2

4 5 6

1 2 3Partition 1 :

Partition 2 :

Partitioned Vertex Set

(c) 2D partition method

Fig. 3. Graph partition.

manner. It initially divides the original edge list into shards based on the destination vertex range
using an interval-shard partitioning method. Subsequently, it conducts a second dimension partition
on the shard to generate blocks for a finer-grained graph subpartition. As shown in Figure 3(c),
the input edge list is divided into several blocks based on their source vertex index range.

3 Challenges and Motivations
To quantitatively evaluate the bottlenecks of the existing designs, we profile the existing state-
of-the-art multi-FPGA graph processing solution, ForeGraph [13], with four large-scale graph
datasets, namely G25, TW, UK, and FR (detailed in Table 1). The profiling result is obtained through
simulation with a system setting of 12.25 Gbps network bandwidth, 19.2 GB/s DDR off-chip memory
bandwidth, and the assumption of PEs processing at their peak throughput [13], shown in Figure 2.
The profiling results demonstrate that both the communication and imbalanced workload increase
the total system runtime significantly in each iteration, leading to poor scale-out performance.
As a result, when executing on four FPGAs, the time increase due to communication overhead
and imbalanced workload accounts for 11%-28% and 12%-32% of the overall time, respectively.
Consequently, this time cost constraints the acceleration to a range of 2× to 2.94× with 4 FPGAs.

Based on the profiling experiment, we identify two critical issues in existing multi-FPGA graph
processing systems: communication overhead and imbalanced workload. However, resolving these
critical issues presents many design challenges.
Challenge 1: To address the significant overhead caused by the communication stage in graph
processing, we can overlap it with computation. However, this approach requires us to accu-
rately capture the behavior of both communication and computation stages to devise an effective
scheduling plan. The challenge lies in the massive and irregular data communications during the
processing of the partitioned subgraphs, which hinder our ability to obtain accurate behavioral
insights necessary for optimizing the overlap of these stages.
Challenge 2: To address the imbalanced workload among multiple FPGAs, we need to obtain
an accurate execution time of the workloads (subgraphs) on the FPGAs. Due to the random and
irregular data access patterns, it is challenging to accurately predict the execution time of graph
processing tasks in each of the FPGAs. This unpredictability complicates the task of achieving
balanced scheduling among multiple FPGAs.

To overcome these challenges, we have the following design motivations.
Motivation 1: Instead of using the remote-scatter pattern, we adopt the remote-apply pattern in
our solution, which aggregates data communications in the apply stage. This approach mitigates
the potentially high-frequency and non-deterministic remote vertex access inherent to the remote-
scatter pattern. By aggregating data communications, we aim to improve network transmission
efficiency, allowing the execution time of the communication stage to be more accurately modeled as
a function of data volume and network bandwidth, providing predictable communication behavior.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:6 Feng Yu et al.

Motivation 2: In addition, the absence of a detailed runtime performance model prevents us from
balanced execution across FPGAs, it draws the requirement of a customized fine-grained graph
computation pipeline that ensures predictable runtime performance.

4 Clementi Overview
Clementi is a multi-FPGA graph processing framework that adopts an edge-centric GAS execution
model with a remote-apply pattern. Each FPGA is configured with the same architecture and
interconnected via an FPGA-side network. Additionally, each FPGA is attached to a CPU node
through PCIe, which manages FPGA kernel control and facilitates data transfers between the
CPU and FPGA memory. Notably, the CPU is only active at the beginning and end of the graph
processing, managing the initial graph data transfer, and returning the final results.

Clementi adopts a four-phase approach for graph processing on a multi-FPGA architecture: (1)
Clementi first partitions the input graph into several subgraphs using an interval-shard partition
method based on the destination vertex range. (2) Secondly, the performance model estimates
the execution time of the partitioned subgraphs. (3) Thirdly, a greedy-based scheduling method
assigns partitioned subgraphs to FPGAs based on the estimated execution times. (4) Finally, each
FPGA processes its assigned subgraphs concurrently. Specifically, each FPGA deploys multiple
gather-scatter sub-modules to process the subgraph’s edge list. An input-aware partition method
is used to further partition the edge lists for balanced processing. Figure 4 presents an overview
of the Clementi workflow, illustrating how the input graph is partitioned into T subgraphs and
subsequently assigned to N FPGAs via a scheduling method.

Input Graph
Interval-shard Partition

Estimate execution times

Sub-

graph 1

…

Performance Model

Assign subgraphs to FPGAs

Graph processing on multi-FPGA

Sub-

graph 2
Sub-

graph 3

Sub-

graph 4
Sub-

graph T-1

Sub-

graph T

PCIe

FPGA N

CPU

Scheduling method

PCIe

FPGA 1

CPU

PCIe

FPGA 2

CPU

PCIe

FPGA 3

CPU

…

Subgraph 3

Subgraph 1

Subgraph 4

Subgraph T-1

Subgraph 2

…

Timeline

Gather-scatter

Overlapped execution

Global Apply

…Subgraph TFPGA N

FPGA 1

FPGA 2

FPGA 3

Waiting

…

(a) (b)

Fig. 4. Overview of the Clementi workflow.

Input Graph
Interval-shard Partition

Estimate execution times

Sub-

graph 1

…

Performance Model

Assign subgraphs to FPGAs

Graph processing on multi-FPGA

Sub-

graph 2
Sub-

graph 3

Sub-

graph 4
Sub-

graph T-1

Sub-

graph T

PCIe

FPGA N

CPU

Scheduling method

PCIe

FPGA 1

CPU

PCIe

FPGA 2

CPU

PCIe

FPGA 3

CPU

…

Subgraph 3

Subgraph 1

Subgraph 4

Subgraph T-1

Subgraph 2

…

Timeline

Gather-scatter

Overlapped execution

Global Apply

…Subgraph TFPGA N

FPGA 1

FPGA 2

FPGA 3

Waiting

…

(a) (b)

Fig. 5. Execution timeline of Clementi.

The remote-apply pattern implemented in Clementi requires each FPGA to maintain a complete
copy of the vertex set in its memory, eliminating the need for remote vertex access during the gather-
scatter stage. Updates to vertex data across FPGAs are limited to the apply stage, referred to as the
global apply stage, where an all-gather operation is performed to synchronize vertex updates across
all FPGAs. Figure 5 depicts the detailed execution timeline, showcasing the overlapping gather-
scatter (computation) and global apply (communication) stages across N FPGAs for the partitioned
T subgraphs. During the global apply stage, each FPGA distributes its computed destination vertex
properties to all other interconnected FPGAs. To ensure predictable data transfer paths and reduce
communication complexity, Clementi adopts a ring topology for FPGA interconnection. This
topology enables sequential, single-direction data updates, mitigating the routing complexity and
contention issues commonly associated with bus-based, point-to-point, and mesh typologies.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:7

5 Clementi Architecture Details
To minimize the scaling-out effort, Clementi employs a unified architecture across all FPGAs, with
each FPGA connected to others through its dedicated 100 Gbps FPGA-side network stack. The
architecture of Clementi, depicted in Figure 6, integrates three types of functional modules that
collaboratively execute the edge-centric GAS graph processing model, following the remote apply
pattern. These modules are designed to address distinct tasks:

Memory

Gather

Scatter

Read

Update

Write

Network Stack

Network

Stack

......
Global Apply

Memory

FPGA 1

RX 1 TX 1 RX 2 TX 2

...

...Gather

Scatter

Read

Update

Write

Gather

Scatter

Read

Update

Gather

Scatter

Read

Update

Write Write

Global Apply

Forward AggregateMerge

Memory Memory Memory

RX 3 TX N-1

UDF_logic

Apply

Gather

Scatter
Gather

Scatter
Gather

Scatter

RX N TX N

Network

Stack

Global Apply

Memory

Gather

Scatter
Gather

Scatter
Gather

Scatter

FPGA 2 FPGA N

Ring-based network

Interconnection

Read Write WriteRead

Fig. 6. Clementi architecture overview.

• Gather-Scatter module: The gather-scatter module retrieves edge lists and vertex properties
from off-chip memory, processes them based on the edge-centric GAS model, and outputs
updated vertex properties data streams. To maximize memory bandwidth utilization across
multiple memory channels, Clementi uses multiple gather-scatter modules, with each FPGA
memory channel assigned a dedicated gather-scatter module to perform scatter and gather
operations concurrently. Details are in Section 5.1.
• Global apply module: The global apply module merges intermediate results from the gather-
scatter modules, applies user-defined functions (e.g., for PageRank or BFS) to the merged results,
and updates vertex properties in both local and remote FPGA memories via the network. Po-
sitioned between the gather-scatter modules and the network stack, it facilitates efficient data
processing and transmission. Details are in Section 5.2.
• Network stack module: The network stack module works in conjunction with the global apply
module to facilitate inter-FPGA communication. Details are in Section 5.3.

5.1 Gather-Scatter Module
The gather-scatter module performs graph processing tasks in edge-centric pattern. During the
scatter operation, the edge list is sequentially loaded from off-chip memory. Based on the edge list
values, the source vertex properties are accessed randomly from off-chip memory and assigned
to the corresponding destination vertices for updates. To optimize small-granularity memory
access, Clementi coalesces source vertex requests into sequential burst reads, loading them into
cache for efficient access. A FIFO (First-in-First-Out) queue buffers destination vertices until the
corresponding source properties are available. The FIFO depth is a hardware-dependent parameter;
with a large value of depth, the pipeline can tolerate longer delays in memory access but requires
more hardware resources, while a small value of depth reduces the resource consumption but may
cause pipeline stalls. Once the source properties are fetched, the gather operation accumulates
properties which share the same destination vertex. To handle the wide range of destination vertices,
Clementi uses cascaded shuffle sub-modules to distribute destination vertices across multiple gather
sub-modules based on vertex ranges. These sub-modules ensure efficient data routing and enable

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:8 Feng Yu et al.

Memory

Engine

Off-chip memory

Edge list

<1, 2>

<2, 4>

<3, 2>

<3, 1>

Vertex

1 2

2 5

3 4

4 3

id prop

Burst

Read FIFO

Destination vertex list

Source vertex list

Coalesce

Memory

Engine

Burst

Read

Src vertex id = 1

Burst length = 4

2 5 4 4

Source prop list

<4, 3>

URAM

Cache
3

<4, 1>

3

2 5 4 3

Gather

Gather

prop

1 7

2 6

id

prop

3 3

4 5

id

Output

prop

Shuffle

5 4
3 3

Src
prop

Dst
id

2 2

4 2

Src
prop

Dst
id

4 1

3 1

Gather-Scatter module

1 2 3 3 4 4

PUSH POP
2 4 2 1 3 1

Shuffle

...

URAM

...

Scatter

Gather

Fig. 7. Architecture of Gather-Scatter module.

parallel gather operations. Destination vertex property data is stored in on-chip URAM (Ultra RAM)
to support frequent updates. After processing all edges, the updated destination vertices are written
from URAM to the global apply module.

The architecture of the gather-scatter module is illustrated in Figure 7, which includes an example
to demonstrate its functionality. As depicted, the scatter sub-module sequentially reads the edge
list data from off-chip memory, dividing it into a source vertex list and a destination vertex list. For
the source vertex list, the memory requests are coalesced to optimize access. Destination vertices
are buffered in a FIFO queue until their corresponding source properties are retrieved, enabling
the generation of the source vertex properties list. The shuffle sub-modules pair items from the
source vertex properties list and the destination vertex list, distributing them to multiple gather
sub-modules for parallel gather calculations.

The processing paradigm in the gather-scatter stage avoids data branching or inter-FPGA trans-
mission, ensuring fully pipelined execution. In terms of implementation, Clementi ensures that the
on-chip data processing pipeline (comprising the shuffle and gather sub-modules) maintains an
overall throughput greater than that of the scatter sub-module, which is constrained by off-chip
data access. As a result, the bottleneck in the gather-scatter stage shifts to off-chip memory access.
Specifically, denote the bandwidth of the off-chip memory channel as 𝐵𝑊 , the size of edge as 𝑆𝑒
bytes, 𝐼 𝐼gather and 𝐼 𝐼shuffle are Initial Intervals (II) of the gather sub-module and shuffle sub-module,
and the operating frequency as 𝑓 . Therefore, the number of sub-modules, denoted as 𝑁gather and
𝑁shuffle, are configured with the following equation.

𝑁shuffle = 𝑁gather ≥
𝐵𝑊 ∗𝑚𝑎𝑥{𝐼 𝐼gather, 𝐼 𝐼shuffle}

𝑆𝑒 ∗ 𝑓
(1)

Furthermore, assume 𝑆uram represents the total memory capacity of the URAMs in each gather
sub-module, and 𝑆𝑣 denotes the size of vertex properties. Due to the limited URAM resources in
FPGA, the destination vertex range 𝑅dest in each subgraph can be determined by Equation 2.

𝑅dest ≤
𝑁gather ∗ 𝑆uram

𝑆𝑣
(2)

5.2 Global Apply Module
Following the remote apply pattern in Clementi, the global apply module consists of merge, apply,
aggregate, and forward sub-modules. It first merges output results from multiple gather-scatter
modules, then performs user-defined apply functions, and finally updates the calculated vertex
properties to both remote and local FPGAs based on aggregate and forward sub-modules.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:9

5.2.1 Merge and forward sub-modules. The merge sub-module merges all intermediate updates
from each Gather-Scatter module before passing them to user-defined apply sub-module for cal-
culating new vertex properties. Similarly, the forward sub-module duplicates the received new
vertex properties across all memory channels to update properties. Both the merge and forward
sub-modules are designed to operate with an Initiation Interval (II) of a single clock cycle, ensuring
high throughput for on-chip data processing in the global apply stage.

5.2.2 Apply sub-module. The apply sub-module featuring customized computing logic tailored for
various applications such as PageRank (PR), Breadth-First Search (BFS), and Weakly Connected
Components (WCC), as demonstrated in List 1. It first reads input data from the merge sub-module,
calculate user-defined apply function for new vertex properties based on the old vertex properties
and the output degree in the graph, and finally outputs the new vertex properties to the aggregate
sub-module. In Clementi, the user-defined apply function is synthesized into hardware with a target
Initiation Interval (II) of a single clock cycle using the #pragma HLS pipeline II=1 directive.
It is then integrated with the merge and aggregate sub-modules via predefined AXI (Advanced
eXtensible Interface) stream interfaces. Note that the AXI Stream interface, is a common protocol
in High-Level Synthesis (HLS) for data transfer, facilitating the transmission of control flags and
payloads in a streaming manner. It eliminates the need for a separate handshake for each data
transfer, instead utilizing a valid-ready handshake mechanism for efficient flow control.
void Apply (MergedStream , PropertyStream , DegreeStream , UpdateStream) {

loop: while (!end) {
#pragma HLS pipeline II = 1

DATATYPE NewProperty = Read_from_stream (MergedStream);
DATATYPE OldProperty = Read_from_stream (PropertyStream);
DATATYPE OutputDegree = Read_from_stream (DegreeStream);

DATATYPE UpdateProperty = UDF_logic (OldProperty , NewProperty , OutputDegree);
Write_to_stream (UpdateStream , UpdateProperty);

... /* other built-in logic */
}

}

inline DATATYPE UDF_logic (OldProp , NewProp , OutDeg) {
DATATYPE UpdateProp;
/* Customized user logic */
UpdateProp = NewProp * 0.85 / OutDeg; /* PR */
UpdateProp = if(IsActive(NewProp)) ? NewProp: OldProp; /* BFS */
UpdateProp = NewProp; /* WCC */
return UpdateProp;

}

Listing 1. User-defined apply function.

Implementing a new algorithm requires modifying only the user-defined logic, with no changes
needed for other components. Specifically, users define the UDF_logic function in C/C++ and
synthesize it using high-level synthesis (HLS) tools. The restrictions on this user-defined code arise
from limitations of HLS tools, requiring that the function be stateless, deterministic, and free of
unsupported features such as dynamic arrays.

5.2.3 Aggregate sub-module. As a part of the global apply module, the aggregate sub-module serves
two key functions: (1) it receives incoming network data packets from other FPGAs and processes
them based on the data flag within each packet, and (2) transmits calculated results from its own
apply sub-module to other FPGAs. The architecture of the aggregate sub-module is illustrated
in Figure 8(a). To optimize network bandwidth utilization, the aggregate sub-module aggregates
multiple data frames into Maximum Transmission Unit (MTU)-sized data packet.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:10 Feng Yu et al.

Buffer

Out

Duplicate

Data_rx1

MUX

Apply

Aggregate

Forward

Network Stack

Data_flag

⚫Address

⚫Packet_id

Data_rx2 Initialization

Update Send

Current network packet

is not from own FPGA

Current

packet is

from own

FPGA

Current frame is last frame

Current frame

is last frame

Bypass

(a) (b)

(a) Architecture of Aggregate sub-module

Buffer

Out

Duplicate

Data_rx1

MUX

Apply

Aggregate

Forward

Network Stack

Data_flag

⚫Address

⚫Packet_id

Data_rx2 Initialization

Update Send

Current network packet

is not from own FPGA

Current

packet is

from own

FPGA

Current frame is last frame

Current frame

is last frame

Bypass

(a)

(b) State-machine of Aggregate sub-module

Fig. 8. Aggregate sub-module.

During the runtime, the first data frame in each data packet contains data flags that control
the functionality of the aggregate sub-module for the subsequent data frames. These data flags
include Address and Packet_id, which are encoded within specific bits of the data frame. The
Address specifies the off-chip memory location for storing the data, while the Packet_id is used
to determine whether the data packet originated from the current FPGA or another FPGA. Within
the aggregate sub-module, a multiplexer (MUX) determines the network output destination based
on the Packet_id of the incoming data packet. If the Packet_id indicates that the data originated
from another FPGA, the received data is forwarded to the downstream FPGA through the network.
Conversely, if the data has completed a full loop through all FPGAs, it no longer needs to be
transmitted over the network. In this case, the aggregate sub-module selects the output of the apply
sub-module to be transmitted to other FPGAs through the network.

For detailed implementation, the aggregate sub-module adopts a hardware-friendly state-machine
design, to process data without external triggers, maintaining high throughput with a single clock
cycle Initial Interval (II). Figure 8(b) shows the state transitions, with detailed explanations.
• Initialization: Checks for the presence of a network data packet from the network stack. If a
packet is detected, the aggregate sub-module retrieves the first frame, decodes the Address and
Packet_id, and transitions to either the Bypass or Update state based on the Packet_id. If no
network data packets are available, it transitions to the Send state.
• Send: Broadcasts local calculated data from the apply sub-module to update the vertex properties
in other FPGAs.
• Update: Receives subsequent network data frames and outputs it to forward sub-module to
update local vertex properties based on Address in the first frame.
• Bypass: Receives the updated vertex properties from the network then bypasses it to the next
FPGA, meanwhile outputs it to forward sub-module to update local vertex properties.

When the last frame in the current data packet is detected (based on AXI-stream protocol), Send,
Update, and Bypass all return to the state of Initialization.

5.2.4 Pipeline execution and bottleneck analysis. In Clementi, after completing the user-defined
apply function for the new vertex properties, the global apply module broadcasts the calculated
results to other FPGAs while simultaneously updating the properties locally. It integrates the merge,
apply, aggregate, and forward sub-modules, each implemented with a single clock-cycle initial
interval (II), enabling a fine-grained pipelined execution. Figure 9 illustrates a simplified example of
vertex property updating across two FPGAs, demonstrating how the global apply pipeline in each
FPGA operates in a fine-grained manner. This approach ensures that network latency is confined
to the transmission of the first data frame, with subsequent latency mitigated through continuous
processing, thereby maintaining high overall processing efficiency.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:11

Clk

FPGA 1 FPGA 2

Network_Tx

Aggregate

Merge

Apply

D1
D1

D1
D1

D2
D2

D2
D2

Clk

D1
D1

D1
D1

D2
D2

D2
Network_Tx

Forward

Aggregate

Network_Rx

Network data

transmission
D2

Fig. 9. Fine-grained pipeline of the global apply stage with single clock-cycle initial interval (II).

To conclude, the global apply stage involves three types of I/O: on-chip data processing, off-chip
memory access, and network data transmission. Under the detailed implementation conditions,
with a frequency of 250 MHz and a data width of 512 bits, both the on-chip data processing
throughput and DDR4 memory bandwidth (around 16 GB/s) exceed the network bandwidth (100
Gbps). The aggregate sub-module in the global apply module interacts with the network stack,
which operates at the lowest bandwidth among the three I/O types. Moreover, the aggregate sub-
module processes the largest data volume as it sends and receives the entire vertex data in total.
Hence, the bottleneck of the global apply stage is the execution of aggregate sub-module, due to
limited network bandwidth and the large volume of transmitted data.

5.3 Network Stack Module
To provide better network compatibility, we adopt an open-sourced network stack in our design [52].
A reliable network environment is assumed, typical of data center scenarios where network trans-
missions are free from packet loss, ensuring uninterrupted pipeline execution in the global-apply
stage with consistent throughput. Based on our experimental profiling results, the streaming data
transmission achieves nearly 100 Gbps with network packet sizes set to MTU of approximately
1500 bytes, and each data frame’s size at 64 bytes. Although the first data frame in Clementi is
reserved for packet metadata, the effective data accounts for up to 95% of the total transmission.
This network stack can be configured via registers to target different IP addresses during runtime.

6 Clementi Runtime
6.1 Performance Model
To accurately modeling the behaviors of the gather-scatter and global apply pipelines, we first
define the relevant parameters. Let 𝐸 represent the number of edges in the subgraph, and denote
𝑀𝑣 and𝑀𝑒 as the number of memory access operations for vertices and edges, respectively. The
data width of the memory port is defined as𝑊𝑀 bits, typically set to 512 bits. We further define
𝐶bw1 and𝐶bw2 as the memory access bandwidths for edges and vertices, respectively, as they follow
different access patterns (detailed in Section 5.1).

6.1.1 Gather-scatter stage. Equation 1 demonstrates that the total processing throughput of multi-
ple shuffle and gather sub-modules is equal to or greater than the maximum memory bandwidth
achievable in the scatter stage. This allows the downstream sub-modules to process the vertex
properties and edge lists as soon as they are read. However, the irregular distribution of destination
vertices leads to a significant number of edges being shuffled to the same gather sub-module, while
leaving other sub-modules underutilized. As a result, this imbalanced distribution among gather
sub-modules prolongs the total execution time of the gather-scatter stage, further compounded by
an additional scaling factor due to data irregularity. Based on these, we can determine the execution
time of the gather-scatter stage 𝑇𝑔𝑠 for each subgraph.

𝑇𝑔𝑠 = 𝑠 · (𝑀𝑒 ·𝑊𝑀

𝐶bw1
+ 𝑀𝑣 ·𝑊𝑀

𝐶bw2
) (3)

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:12 Feng Yu et al.

where 𝑠 is the scaling factor that 𝑠 ≥ 1. According to the edge-centric execution model, edge lists
are accessed sequentially in gather-scatter module. We assume each edge has two vertices, the data
width of the vertex is𝑊𝑣 , usually 32 bits as an int type. Hence, the 𝑀𝑒 equals to 2𝐸𝑊𝑣

𝑊𝑀
. Then we

could obtain the traversed edges per second (TEPS):

𝑇𝐸𝑃𝑆 =
𝐸

𝑇𝑔𝑠
=
1
𝑠
· 1

2𝑊𝑣

𝐶bw1
+ 2𝑊𝑣

𝐶bw2
· 𝑀𝑣

𝑀𝑒

(4)

Given that the 𝐶bw1 is a constant value due to the sequential access of edge, while the 𝐶bw2 varies
with the distribution of the source vertex. Furthermore, taking into account the peak performance
achievable by a saturated FPGA pipeline, we define the𝐶1 as the peak throughput by a gather-scatter
pipeline, the above equation can be formulated as follows.

𝑇𝐸𝑃𝑆 = min(𝐶1, 𝛽 ·
1

𝐶2 + 𝛼 · 𝑀𝑣

𝑀𝑒

) (5)

where 𝛼 =
2𝑊𝑣

𝐶bw2
and 𝛽 = 1

𝑠
vary with the distribution of source and destination vertex in different

subgraphs, respectively. The constant values of𝐶1 and𝐶2 =
2𝑊𝑣

𝐶bw1
are determined based on the actual

hardware performance of gather-scatter module.

6.1.2 Global apply stage. As discussed in Section 5.2.4, the global apply stage holds a fine-grained
pipeline with nearly constant throughput, indicating predictable time consumption to update all
destination vertex in each subgraph. Define 𝑝 as the number of partitioned subgraphs and 𝐶3 as
the constant time consumption under the fixed number of destination vertex in the subgraph, and
we have the total execution time of the global apply stage:

𝑇𝑔𝑎𝑝𝑝𝑙𝑦 = 𝑝 ·𝐶3 (6)

To summarize, we give the total execution time 𝑇𝑎𝑙𝑙 of graph processing tasks on each FPGA:

𝑇𝑎𝑙𝑙 = 𝑇𝑔𝑠 +𝑇𝑔𝑎𝑝𝑝𝑙𝑦 +𝑇𝑐𝑜𝑛𝑠𝑡 (7)

where the𝑇𝑐𝑜𝑛𝑠𝑡 represents the constant overhead in graph processing, including partition switching
and start-up overhead in the pipeline. In practice, We first determine the values of the parameters
𝐶1,𝐶2,𝐶3 and 𝑇𝑐𝑜𝑛𝑠𝑡 , which are independent of the graph data distribution, based on real hardware
execution. Then, based on the range of 𝐶bw2 from 2 GB/s to 16 GB/s on DDR4 memory, 𝛼 ranges
from [0.5, 4]. Similarly, 𝛽 ranges from [0.25, 1], where 𝛽 = 1 indicates no conflicts in the shuffle
stage, and 𝛽 = 0.25 represents complete conflicts with all destination vertices having the same value.
Clementi sets 𝛼 = 2 and 𝛽 = 0.75 as initial values, and then refines them for improved accuracy.
As demonstrated in previous studies [1, 44], a sampled subset of subgraphs is used to estimate the
values of 𝛼 and 𝛽 . Specifically, the gather-scatter stage is executed on a randomly selected subset
of subgraphs using a single FPGA. The execution time from this stage is used to fit 𝛼 and 𝛽 , which
are then applied globally to all subgraphs. This sampling-based approach provides execution time
estimation without the need to process all subgraphs.

6.2 Balanced Workload Scheduling
The workload scheduling method aims to distribute subgraphs across N FPGAs, ensuring a bal-
anced workload among FPGAs and meanwhile avoiding communication conflict by a rescheduling
mechanism. The output is a workload execution list for each FPGA. Below are the key concepts:
• Scheduling: This step assigns the whole subgraph execution workloads (including gather-scatter
stages and global apply stages) to each FPGA for balanced execution times.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:13

• Conflicts: Conflicts occur when multiple FPGAs attempt to transmit or receive data simultane-
ously in their global apply stages. In the ring topology, only one data packet can be transmitted
at a time, requiring conflict management.
• Rescheduling: Rescheduling shifts subgraph executions to new time slots when conflicts are
detected. If a conflict occurs, the task is either swapped with another on the same FPGA or
postponed to avoid contention.
• Waiting Period: The waiting period refers to the idle time when an FPGA has completed its
current gather-scatter stage in subgraph execution but cannot proceed to global apply stage due
to conflicts from other FPGAs, this is shown in Figure 5.
Following the Equation 3 and 6, we get the execution time predictions of the gather-scatter and

global apply stage for each partitioned subgraph, respectively. Each execution of the gather-scatter
stage is consistently followed by a global apply stage. Based on these, our workload scheduling
method is divided into two main parts: naive workload scheduling and workload rescheduling to
optimize the waiting period, shown in Algorithm 2. The naive workload scheduling approach aims
to minimize the maximum execution time among FPGAs, a goal commonly referred to as makespan
minimization [41]. To achieve this, we utilize a widely adopted greedy-based approach for workload
balancing. It processes input subgraphs in descending order of their estimated execution times and
assigns each subgraph to the FPGA whose workload currently has the smallest total execution time,
ensuring a balanced distribution of execution time across all FPGAs. The rescheduling process
rearranges workloads within each FPGA’s workload list by interleaving global apply stages across
FPGAs. For each workload in the list, we first check for data conflicts to determine if it needs
to be rescheduled to a different execution time. If a conflict is detected, the Choose operation
enumerates all workloads assigned to the same FPGA to find a workload that does not conflict
with the current scheduling plan. If the Choose operation fails to find a conflict-free workload, our
method introduces a waiting period caused by conflicts, referred to as a Dummy.

While the optimal solution to workload scheduling could be achieved by exhaustively evaluating
all possible workload permutations, this approach has an 𝑂 (𝑛!) complexity. Therefore, we opt for
a practical and efficient solution that only considers task swapping within the workload list of a
single FPGA to reduce the scheduling cost. This may involve sub-optimal scheduling while the
experimental results remain highly efficient in practice.

Algorithm 2Workload Scheduling Method
Input: 𝑁 : number of FPGAs;𝑊 = {𝑊1,𝑊2, . . .𝑊𝑚}: input partition workloads ;
Output: 𝑆𝑊 = {𝑆𝑊1, 𝑆𝑊2, . . . 𝑆𝑊𝑁 }: Scheduled Workload list;
1: Set each 𝑆𝑊𝑖 = ∅, 𝑖 = 1, 2, 3, ..., 𝑁 ;
2: 𝑆𝑊 = 𝐺𝑟𝑒𝑒𝑑𝑦𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑊, 𝑁) Stage.1. Makespan minimization

3: for each 𝑆𝑊𝑗 ∈ 𝑆𝑊 : Stage.2. Rescheduling workload
4: for each𝑊𝑖 ∈ 𝑆𝑊𝑗 :
5: while (HaveConflict(𝑊𝑖) == True): /* Select a workload in same workload list without conflict */
6: 𝑊𝑡𝑒𝑚𝑝 = Choose(𝑆𝑊𝑗);
7: if (𝑊𝑡𝑒𝑚𝑝 ≠ ∅) then:
8: Swap(𝑊𝑡𝑒𝑚𝑝 ,𝑊𝑖);
9: else
10: 𝑆𝑊𝑗 .append(𝐷𝑢𝑚𝑚𝑦); /* Waiting */
11: end for
12: end for
13: Return 𝑆𝑊 = {𝑆𝑊1, 𝑆𝑊2, . . . 𝑆𝑊𝑁 };

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:14 Feng Yu et al.

6.3 Input-Aware Partitioning
When executing a subgraph on a single FPGA, input-aware partitioning generates finer-grained
edge list blocks to ensure balanced workloads across multiple gather-scatter sub-modules in a
2D partition manner. As indicated by the Equation 3, the aim of input-aware partitioning is to
minimize the values of 𝑀𝑣

𝑀𝑒
while maintaining a balanced edge number across all blocks.

The partition process begins with grouping the original graph 𝐺 into multiple 𝐺𝑟𝑜𝑢𝑝𝑠 based on
the read burst length in the gather-scatter module. This ensures that a single burst read operation
covers all source vertex accesses within a𝐺𝑟𝑜𝑢𝑝 𝑖𝑡𝑒𝑚 through the vertex coalescing. Next, a greedy
allocation method is employed to assign the most edge-heavy items to destination sets with the
fewest existing edges. This allocation step aims to maintain an even edge distribution across groups
to avoid load imbalance. Given the skewed data distribution typical of real-world graphs, we then
apply an iterative refinement process. In each iteration, the𝐺𝑟𝑜𝑢𝑝 𝑖𝑡𝑒𝑚 with the largest edge count
is divided into smaller 𝑖𝑡𝑒𝑚𝑠 to further balance the edge distribution. The execution time of each
generated edge list block is estimated during every iteration based on the performance model to
ensure load balancing across all blocks. While a finer granularity of 𝑖𝑡𝑒𝑚𝑠 can offer a better balanced
execution, it inadequately increases the memory access operations due to redundant data access
in the generated 𝑖𝑡𝑒𝑚𝑠 . To prevent over-partitioning, the iterative refinement process terminates
upon reaching a local minimum in the total estimated execution time.

Graph

Edge list

<1, 2>

<3, 2>

<3, 1>

<4, 2>

<4, 5>

<5, 4>

<4, 3>

<1, 2>

Group 1 Group 2

<3, 2>

<3, 1>

<4, 2>

<4, 5>

<4, 3>

<5, 4>

Group 3

SrcGrouping

Burst_length = 2

<1, 2>

Group 1 Group 2

<3, 2>

<3, 1>

<5, 4>

Group 4Group 3

<4, 2>

<4, 5>

<4, 3>

<3, 5>

<3, 5>

<3, 5>

Divide item

Block 1

Edge list

Block 2

Edge list

Block 1

Edge list

Block 2

Edge list

Group 2

Iteration 1

Iteration 2 : Divide item with maximal edge number

SrcGrouping

Burst_length = 2

Greedy allocation

<1, 2>

Group 1

<5, 4>

Group 3
<3, 2>

<3, 1>

<4, 2>

<4, 5>

<4, 3>

<3, 5>

Greedy allocation

<1, 2>

Group 1
Group 2

<3, 2>

<3, 1>

<3, 5>

<5, 4>

Group 4Group 3

<4, 2>

<4, 5>

<4, 3>

Fig. 10. Example of input-aware partition method.

Figure 10 illustrates an example of the input-aware partition method. The original input edge
list is initially grouped based on the source vertex range and then allocated into different blocks.
The group with the maximum number of edges undergoes division using an iterative partitioning
strategy to achieve balanced edge numbers and 𝑀𝑣

𝑀𝑒
across generated blocks.

7 Experimental Results
7.1 Experimental Setting
7.1.1 Hardware platforms. We deploy Clementi on publicly accessible HACC [2] cluster, which
consists of six AMD Alveo U250 [50] FPGAs, each managed by a virtual CPU and connected to
network switches via the 100 Gbps FPGA-side network stack. We use Vitis HLS [49] toolchain
2021.2. Additionally, we employ OpenMPI [35] 4.1.4 for control across multiple virtual CPUs.

7.1.2 Implementation settings. We set the interval size to 1 million vertices in the initial interval-
shard graph partition. Additionally, we configure each gather-scatter module with a read burst
length of 512, a FIFO depth of 512, and 16 gather and 16 shuffle sub-modules.

7.1.3 Graph datasets. The graph datasets used in the experiments are detailed in Table 1, ranging
from synthetic to real-world graphs with various scales and distributions. The data types in all
graphs are set to 32-bit integers.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:15

Table 1. Graph datasets in our experiment

Dataset Name |V| |E| Categories

enwiki-2013 (WK) [4] 4.2 M 101.4 M Web
rmat-25-16 (R25) [25] 33.6 M 536.87 M Synthetic

graph500-scale24-ef16 (G24) [37] 8.9 M 520.5 M Synthetic
graph500-scale25-ef16 (G25) [37] 17.0 M 1.0 B Synthetic

Twitter-2010 (TW) [24] 41.6 M 1.47 B Social
gsh-2015-host (GSH) [5] 68.7 M 1.80 B Web
Friendster (FR) [26] 65.6 M 1.81 B Social
SK-2005 (SK) [5] 50.6 M 1.95 B Web

UK2007-05 (UK) [5] 105.9 M 3.74 B Web
Kron-28-32 (K28) [25] 268.4 M 8.59 B Synthetic

7.2 Resource Utilization and Frequency
We evaluate the resource utilization and maximum frequency of Clementi on AMD U250 [50] with
three commonly-used graph processing algorithms: Page Rank (PR), Breadth-First Search (BFS),
and Weakly Connected Components (WCC), shown in Table 2.

Table 2. Resource utilization and frequency on U250 [50] FPGA

Resource Type PageRank BFS WCC
CLB 67.92% 66.86% 66.77%
BRAM 40.87% 39.29% 39.29%
URAM 60.70% 60.70% 60.70%
DSP 0.40% 0.14% 0.14%

Frequency (MHz) 250.0 250.0 250.0

7.3 Performance Model Evaluation
7.3.1 Accuracy of performance model. Our performance model is designed to capture the key
bottlenecks in graph processing pipelines, such as off-chip memory access in the gather-scatter
stage and network communication cost in the global-apply stage. While we omit certain factors,
such as on-chip data processing overhead and on-chip memory access latency, these factors con-
tribute significantly less to performance variability compared to the major bottlenecks. For detailed
implementation, we determine all the constant parameters in Equation 7 by utilizing the hard-
ware execution times on single FPGA from randomly selected subgraphs. Subsequently, we fit
corresponding 𝛼 and 𝛽 to predict the execution time on each dataset. To evaluate the accuracy of
our performance model, we calculate the subgraph error ratio, defined as the average discrepancy
between the predicted execution times and the actual hardware execution times for all subgraphs
within a dataset. As shown in Table 3, under the optimal alpha and beta settings, the subgraph
error ratios are predominantly below 5%, demonstrating that it is sufficiently accurate for making
reliable workload scheduling decisions in practice.

Table 3. Results for performance model

Dataset R25 G24 G25 TW FR GSH SK UK K28
𝛼 1.57 2.02 1.92 1.33 1.95 1.14 2.65 1.36 1.63
𝛽 1.00 0.76 1.00 0.72 1.00 0.61 0.61 0.61 0.98

Subgrph Error Ratio (%) 2.22 1.57 2.59 0.81 3.28 2.21 6.97 5.00 0.29

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:16 Feng Yu et al.

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0% 20% 40% 60% 80% 100%

M
T

E
P

S

Sample Ratio

R25 G24 G25 TW FR

GSH SK UK K28

(a)

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0% 20% 40% 60% 80% 100%

M
T

E
P

S

Sample Ratio

R25 G24 G25 TW FR

GSH SK UK K28

(b)(a) Performance variation on two FPGAs

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0% 20% 40% 60% 80% 100%

M
T

E
P

S

Sample Ratio

R25 G24 G25 TW FR

GSH SK UK K28

(a)

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0% 20% 40% 60% 80% 100%

M
T

E
P

S

Sample Ratio

R25 G24 G25 TW FR

GSH SK UK K28

(b)(b) Performance variation on four FPGAs

Fig. 11. Sensitivity study of 𝛼 and 𝛽 in Clementi’s approach.

7.3.2 Sensitivity study for 𝛼 and 𝛽 . In this part, we discuss the impact of 𝛼 and 𝛽 on the end-to-end
hardware execution performance. We first analyze the sample ratio factor in Clementi, as 𝛼 and 𝛽

are fitted based on real hardware execution data from sampled subgraphs. Figure 11 illustrates the
results: As the sample ratio increases from 0% to 100%, performance improves due to a more accurate
estimation of execution time, eventually converging to the best-case scenario in multiple datasets.
Figure 11(a) and Figure 11(b) presents the performance under two and four FPGAs, respectively.
When the sample ratio exceeds 30%, the performance stably approaches the peak, demonstrating
that this sampling-based method is both practical and effective.

Furthermore, we conduct an extended sensitivity analysis by varying the configuration parame-
ters 𝛼 and 𝛽 over a broader range using manually assigned values. Specifically, 𝛼 is varied from 0.5
to 4.0 with an interval of 0.5, and 𝛽 is varied from 0.5 to 1.0 with an interval of 0.1. Figure 12(a)
presents the end-to-end performance variation on two FPGAs using the TW dataset. The measured
throughput ranges from 2720 MTEPS to 4045 MTEPS, resulting in a 32.7% variation. Figure 12(b) fur-
ther illustrates the performance variability across all evaluated datasets under various combinations
of 𝛼 and 𝛽 on both two-FPGA and four-FPGA configurations. The results show that performance
fluctuates between 7.3% and 32.7% on two FPGAs, and between 7.5% and 37.1% on four FPGAs.
These findings indicate that manually assigned values for 𝛼 and 𝛽 yield significant performance
variations due to insufficient consideration of graph data distribution, thereby highlighting the
effectiveness of the sampling-based method in Clementi.

2500

2750

3000

3250

3500

3750

4000

alpha =

0.5

alpha =

1

alpha =

1.5

alpha =

2

alpha =

2.5

alpha =

3

alpha =

3.5

alpha =

4

M
T

E
P

S

beta = 0.5 beta = 0.6 beta = 0.7

beta = 0.8 beta = 0.9 beta = 1.0

7.3%

15.6%

23.4%
32.7%

25.7%

17.1%

22.2%

28.9%

7.3%

7.5%

32.4%

37.1% 34.9%

33.0%

26.5%
26.8%

31.7%

10.9%

0%

20%

40%

R25 G24 G25 TW FR GSH SK UK K28

P
er

fo
rm

a
n

ce
 v

a
ri

a
ti

o
n

s

2 FPGAs 4 FPGAs

(a) Performance variation on two FPGAs on TW dataset

2500

2750

3000

3250

3500

3750

4000

alpha =

0.5

alpha =

1

alpha =

1.5

alpha =

2

alpha =

2.5

alpha =

3

alpha =

3.5

alpha =

4

M
T

E
P

S

beta = 0.5 beta = 0.6 beta = 0.7

beta = 0.8 beta = 0.9 beta = 1.0

7.3%

15.6%

23.4%
32.7%

25.7%

17.1%

22.2%

28.9%

7.3%

7.5%

32.4%

37.1% 34.9%

33.0%

26.5%
26.8%

31.7%

10.9%

0%

20%

40%

R25 G24 G25 TW FR GSH SK UK K28

P
er

fo
rm

a
n

ce
 v

a
ri

a
ti

o
n

s

2 FPGAs 4 FPGAs

(b) Performance variation on two and four FPGAs

Fig. 12. Sensitivity study for manually specified 𝛼 and 𝛽 values.

7.4 Input-aware Partition Time Cost
We conducted input-aware partitioning tests on the AMD7V13 CPU, measuring two key compo-
nents: the time required to load the entire graph from the hard disk into CPU memory and the time

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:17

Table 4. Graph Load & Partition time cost

Time(min) Dataset
R25 G24 G25 TW FR GSH SK UK K28

Load 3.52 3.18 6.83 9.77 11.78 12.7 22.57 18.13 59.98
Partition 2.52 2.65 4.50 13.45 38.62 5.00 14.38 13.82 58.55

taken for input-aware partitioning, as shown in Table 4. While the loading and partitioning times
are longer than the graph processing time, it is important to note that these represent one-time
costs. Once the graph is loaded and partitioned, the same partitions can be reused for multiple
processing runs, which is typical in large-scale graph processing systems, effectively amortizing
the initial setup cost.

7.5 Overall Performance Evaluation
We employ PR, BFS, WCC graph processing algorithms on Clementi with 1, 2, 4, and 6 FPGAs. The
overall performance is shown in Table 5.

Table 5. Performance on large-scale graph datasets

Algo. # of Performance (MTEPS)
FPGAs R25 G24 G25 TW FR GSH SK UK K28

1 3936 4345 4149 2043 1493 1658 2858 2544 OOM
PR 2 7601 8459 7702 4045 2951 3296 5589 5075 5995

4 13722 15901 14834 8012 5893 6436 10971 9991 11812
6 15780 19081 18712 10518 8476 9522 15416 11787 17378
1 3948 4457 4308 2231 1519 1819 3078 3352 OOM

BFS 2 7420 8792 8313 4354 2980 3619 5709 6611 5941
4 13377 16402 15267 8450 5870 6988 11290 10973 11779
6 15484 18638 19706 10128 8466 9223 15792 11153 17416
1 3965 4411 4454 2252 1520 1834 2978 3381 OOM

WCC 2 7712 8644 8206 4342 2997 3630 5701 6641 5956
4 14085 16198 15178 8413 5937 7071 11043 11094 11762
6 15471 18400 19342 10268 8420 9272 15653 11762 17354

We measure throughput in millions of traversed edges per second (MTEPS). As shown in Ta-
ble 5, the results indicate that as the number of FPGAs in Clementi increases, the performance
correspondingly increases, reaching a peak of 19.7 GTEPS on 6 FPGAs with the BFS application.
However, Clementi’s performance on real-world graphs displays a decline compared to synthetic
graphs. This discrepancy can be attributed to the higher 𝑀𝑣

𝑀𝑒
(vertex memory access operations

constitute a larger proportion relative to edge memory access operations, defined in Section. 6.1) in
real graphs, resulting in reduced processing efficiency according to the Equation 4. Taking the FR
dataset as an example, its average degree is 2.13 × higher than that of G25, suggesting a higher
𝑀𝑣

𝑀𝑒
during graph processing. This increase in the vertex-to-edge ratio results in more frequent

vertex data accesses, which in turn leads to higher memory access overhead in edge-centric graph
processing pattern, thus causing declined performance.

7.6 Scalability Evaluation
For scalability evaluation, we run PageRank on 1 to 6 AMDU250 [50] FPGAs, using gigabit traversed
edges per second (GTEPS) as the performance metric. As illustrated in Figure 13, Clementi achieves
near-linear scalability, with a 3.42x–3.88x throughput improvement under a 4-FPGA configuration
and a 4.0x–5.74x throughput improvement under a 6-FPGA configuration. This scalability validates
the effectiveness of Clementi’s architecture-oriented performance model and workload scheduling

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:18 Feng Yu et al.

0.00

10.00

20.00

30.00

1 2 3 4 5 6

0.00

10.00

20.00

30.00

1 2 3 4 5 6

0.00

10.00

20.00

30.00

1 2 3 4 5 6

0.00

5.00

10.00

15.00

1 2 3 4 5 6

0.00

2.00

4.00

6.00

8.00

10.00

1 2 3 4 5 6

0.00

3.00

6.00

9.00

12.00

1 2 3 4 5 6

0.00

4.00

8.00

12.00

16.00

20.00

1 2 3 4 5 6

0.00

4.00

8.00

12.00

16.00

20.00

1 2 3 4 5 6

0.00

4.00

8.00

12.00

16.00

20.00

1 2 3 4 5 6

of FPGAs # of FPGAs

of FPGAs

of FPGAs # of FPGAs

of FPGAs

of FPGAs

of FPGAs # of FPGAs

G
ig

a
b

it
 T

ra
v

er
se

d
 E

d
g

es
 P

er
 S

ec
o
n

d

(G
T

E
P

S
)

R25

OOM

G24 G25 TW FR

GSH SK UK K28

Clementi Linear Scale

Fig. 13. Scalability evaluation of PageRank algorithm on various datasets in Clementi (Higher is better).

method, which balance execution across FPGAs while minimizing communication overhead. The
deviation from ideal linear scalability can be attributed to two primary factors. First, for smaller
datasets such as G24 and G25, which contain only 8 and 17 subgraphs respectively, the limited
number of subgraphs results in imbalanced workload distribution across 4 to 6 FPGAs. Second,
in graphs with high power-law distributions, such as UK, a small number of subgraphs with
high-degree nodes dominate the execution time, leading to load imbalances and reducing overall
scalability. Note that the out-of-memory (OOM) in K28 dataset occurs because its large data volume
exceeds the memory capacity of a single FPGA.

7.7 Performance Comparison with SOTA
We compare our Clementi with SOTA FPGA-based designs Foregraph [13] and GraVF-M [14], as
well as open-sourced baselines: CPU-based solution Gemini [57] and GPU-based solution Lux [21].
Table 6 shows the platform specifications of evaluated designs.

Table 6. Platform specifications for target designs

Design Type Platform Litho Memory
Bandwidth

Interconnect
type

ForeGraph [13] Multi-FPGA XCVU190 20 nm 19.2 GB/s Network
GraVF-M [14] Multi-FPGA KU060 20 nm 30 GB/s PICe
Gemini [57] Multi-CPU XeonE5-2670v3 22 nm 68 GB/s Network
Gemini [57] Multi-CPU AMD7V13 7 nm 230 GB/s Network
Lux [21] Multi-GPU NVIDIA V100 12 nm 898 GB/s PCIe
Clementi Multi-FPGA Xilinx U250 16 nm 77 GB/s Network

7.7.1 Throughput comparison with FPGA designs. Note that ForeGraph [13] is not publicly available,
we prototype its performance based on details from their paper. Specifically, we derive results
from both their reported data and our simulation using a 12.25 Gbps network stack, referred to
as ForeGraph-sim. Table 7 presents a performance comparison between Clementi and ForeGraph,
using 4 FPGAs for both systems, across the PR, WCC, and BFS applications. The results demonstrate
that Clementi achieves between 2× and 8.75× performance improvement compared to ForeGraph
and ForeGraph-sim. While Clementi benefits from a 4× improvement in hardware bandwidth (76.8
GB/s DRAM bandwidth vs 19.2 GB/s DRAM in ForeGraph and 12.25 Gbps network bandwidth),
it achieves more than 4× overall performance improvement, peaking at 8.75× for datasets such

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:19

Table 7. Throughput comparison with ForeGraph [13]

Designs App. Datasets Throughput
(MTEPS)

Clementi
(MTEPS) Speedup

ForeGraph [13]
(Results from paper)

PR
TW

1856 8012 4.32x
WCC 1727 8450 4.87x
BFS 1458 8413 5.77x

ForeGraph-sim

PR
G25

2209 14834 6.72x
WCC 2055 15267 7.43x
BFS 1735 15178 8.75x
PR

TW
1856 8012 4.32x

WCC 1727 8450 4.89x
BFS 1458 8413 5.77x
PR

UK
2264 9991 4.41x

WCC 2107 10973 5.21x
BFS 1779 11094 6.24x
PR

FR
2728 5893 2.16x

WCC 2539 5870 2.31x
BFS 2143 5937 2.77x

as TW, G25 and UK. This demonstrates that the performance gain is attributable not only to the
platform but also to the superior hardware-software co-design of Clementi.
Compared to GraVF-M [14], which uses a PCIe Gen3x8 interconnection for 4 FPGAs with a

bandwidth of 64 Gb/s and a memory bandwidth of 30 GB/s per FPGA, we configure Clementi with 4
FPGAs to ensure a fair comparison. Using RMAT graph datasets and following the same uniform dis-
tribution and degree variation settings as the GraVF-M paper, Table 8 shows that Clementi achieves
a performance improvement ranging from 2.21× to 3.85×. The most notable gains occur when the
average degree of the graph exceeds 4, which is common in widely used graph datasets. Although
having approximately 2.5× hardware bandwidth compared to GraVF-M, Clementi achieves more
than 2.5× the performance improvement, peaking at 3.85×. This underscores that our design plays a
critical role in improved performance beyond just the hardware capabilities, especially in handling
high-degree graph workloads.

Table 8. Throughput (MTEPS) comparison with GraVF-M

Degree of
RMAT [25] 2 4 8 16 32 64

GraVF-M [14] 652 856 1280 2083 3568 4623
Clementi 1443 2519 4204 6172 13722 15430
SpeedUp 2.21x 2.94x 3.28x 2.96x 3.85x 3.34x

7.7.2 Throughput comparison with CPU/GPU designs. To evaluate the performance of Clementi
against state-of-the-art designs, we first compared it with the CPU-based Gemini system [57],
using data from the original publication. This comparison is justified by the comparable memory
bandwidths of the CPU used in Gemini (68 GB/s) and the U250 FPGA (77 GB/s), as well as the
identical 100 Gbps network configurations used in both systems. We selected PageRank as the
benchmark algorithm, as it provides a fair comparison for both edge-centric and vertex-centric
graph processing systems. We measure throughput in MTEPS (Million Traversed Edges Per Second)
across various node configurations. Due to the unavailability of clusters with 8 U250 FPGAs, we
present results for configurations with a maximum of 6 FPGAs in HACC [2], detailed in Table 9.

The results show that for the smaller WK dataset, Clementi consistently outperforms Gemini [57]
in both scalability and overall performance. For the TW dataset, Clementi achieves comparable
performance to Gemini while demonstrating superior scalability. The TW dataset, which contains a
high concentration of high-degree vertices within a limited vertex range, clusters these vertices on

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:20 Feng Yu et al.

Table 9. Throughput (MTEPS) comparison with Gemini [57] (Results collected from paper) on PageRank

Number of nodes WK TW UK
(CPU/FPGA) Gemini Clementi Gemini Clementi Gemini Clementi

1 4188 2646 2304 2043 7430 2544
2 3811 4736 4191 4045 14466 5075
4 3560 7088 7423 8012 25648 9991
6 - 8108 - 10518 - 11787
8 4188 - 9724 - 50523 -

a single node in multi-node setups. This clustering leads to an increase in communication overhead
in Gemini, which lacks efficient communication optimization. Conversely, for the UK dataset,
characterized by edge concentration around adjacent vertices, Gemini’s performance surpasses our
system due to its low Last Level Cache (LLC) miss ratio, which is well suited to the CPU architecture.
Additionally, Gemini benefits from reduced data communication volumes, enhancing its scalability
for this dataset. Overall, Clementi still demonstrates a strong scalability in handling various graph
data distributions.

To ensure fairness in the comparison, we re-evaluated the multi-CPU based Gemini [57] and the
multi-GPU based Lux [21] using current hardware: AMD 7V13 CPUs and V100 GPUs, providing
a more up-to-date reflection of their performance. We used up to three AMD 7V13 CPUs, each
with 230 GB/s memory bandwidth, all connected through a 100 Gbps network. For the GPU-
based system, we utilized a single NVIDIA Tesla V100 SXM2 machine, which consists of four
GPUs interconnected by PCI-E 3.0 x16 interfaces with a bandwidth of 16 GB/s. The results of
these evaluations are summarized in Table 10. Note that the performance results for Clementi are
provided separately in Table 5.

Table 10. Throughput (MTEPS) for Gemini [57] (on AMD CPUs) and Lux [21] (on V100 GPUs) on PageRank

Design # of Throughput (MTEPS)
nodes R25 G24 G25 TW FR GSH SK UK

Gemini [57]

1 4615 13450 10459 4660 1260 6974 20271 16535
2 3937 5820 6731 3291 2142 8488 27814 12316
3 4028 5272 6885 4302 2666 8765 33646 10874

Lux [21]

1 3835 8236 7489 2198 2787 10868 15155 OOM
2 6457 14419 12799 3689 4882 15778 23210 10978
3 3669 7457 6741 2953 2547 9770 12797 OOM
4 8762 18859 20095 5856 7970 18958 32934 14937

For the multi-CPU results, the upgrade in CPU memory bandwidth enhances Gemini’s perfor-
mance in single-node setting, delivering high throughput. In terms of bandwidth, a single CPU is
comparable to three FPGAs (230 GB/s per CPU compared to 77 GB/s per U250 FPGA). Similarly to
the phenomenon observed in the previous comparison with Gemini (data from the original paper),
Gemini benefits from higher LLC hit rates due to the CPU cache system, such as SK and GSH. In
contrast, Clementi excels in handling other datasets.
For multi-GPU comparison, the experimental results underscore Lux’s ability to leverage sub-

stantial computational power and high memory bandwidth (898 GB/s), particularly with graph data
characterized by dense edge concentrations, as observed in SK and GSH. However, despite operating
with a significant bandwidth of 898 GB/s, Lux’s performance does not meet the projected efficiency
of Clementi, which uses only 77 GB/s. Considering that graph processing is predominantly memory-
bound, this performance gap is significant, suggesting a notable underutilization of bandwidth by

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:21

Lux. Notably, in the configuration utilizing three GPUs, Lux exhibits a performance degradation
attributable to resource under-utilization—only a single GPU is actively engaged in computation,
while the remaining two remain idle. Consequently, the suboptimal resource allocation fails to
deliver any performance improvement over the single-GPU baseline.

7.7.3 Energy efficiency comparison. We evaluate the energy efficiency of Clementi in comparison
to the CPU-based Gemini [57] and GPU-based Lux [21], using AMD 7V13 CPUs and V100 GPUs,
respectively. Power consumption was measured using turbostat[20] for the CPU, nvidia-smi[33]
for the GPU and xbutil[51] for the FPGA. We define energy efficiency as the ratio of million
traversed edges per second per watt (MTEPS/W), and test this metric across 1 to 4 nodes on various
graph datasets, shown in Figure 14.

0

40

80

120

0

40

80

0

30

60

0

20

40

OOM

OOM

M
T

E
P

S
/W

Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi

(a) Single-node setting

0

40

80

120

0

40

80

0

30

60

0

20

40

OOM

M
T

E
P

S
/W

Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi

(b) Two-node setting

0

40

80

120

0

40

80

0

30

60

0

20

40

OOM

OOM

M
T

E
P

S
/W

Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi

(c) Three-node setting

0

40

80

120

0

40

80

0

30

60

0

20

40

OOM

OOM

M
T

E
P

S
/W

Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi Gemini Lux Clementi

(d) Four-node setting

Fig. 14. Energy efficiency comparison.

In Clementi, each FPGA card is attached with a CPU node for control, following the configuration
in HACC [2] cluster. Hence, we combined the power consumption of the CPU and FPGA when
calculating the energy efficiency of Clementi. Each FPGA board in Clementi peaks at 69.4W during
graph processing, with the attached CPU consuming 37W. In contrast, the V100 GPU in Lux
consumes approximately 250W, while the AMD 7V13 CPU in Gemini consumes around 165W
for the same tasks. The results demonstrate that Clementi outperforms multi-CPU/GPU designs
in energy efficiency, delivering an average 1.52× improvement in a two-node setting and an
average 1.95× improvement in a four-node setting. This energy advantage arises from the design of
customized fine-grained hardware pipelines for graph processing, where unnecessary components
are eliminated, thereby minimizing energy consumption.

7.7.4 Cost effectiveness comparison. We collect publicly available pricing data for cloud devices,
widely used in research due to their accessibility and scalability. On the Microsoft Azure cloud
platform [32], the hourly prices are as follows: NCv3 series with NVIDIA V100 GPU at $3.00/hour,
Eadsv5 series with AMD EPYC 7763 CPU (comparable to 7V13) at $1.31/hour, and NP-series with
Xilinx U250 FPGA at $1.65/hour [31]. While GPUs offer strong raw performance, their high cost
reduces performance-per-dollar compared to FPGAs. By leveraging the cost-efficiency of FPGAs,
Clementi became a cost-effective solution for graph processing in cloud computing.

7.8 Network Bandwidth Sensitivity Evaluation
Network bandwidth is critical for Clementi’s multi-FPGA communication, especially in large-
scale deployments where high-speed data transfers are essential. Limited bandwidth increases
communication overhead and potentially degrades overall performance. To evaluate its impact, we
test normalized throughput under varying bandwidths (100 Gbps to 25 Gbps).
Figure 15 demonstrates that Clementi maintains high throughput under decreased inter-FPGA

bandwidth conditions. Reducing the bandwidth from 100 Gbps to 50 Gbps results in throughput

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:22 Feng Yu et al.
N

o
rm

a
li

ze
d

 T
h

ro
u

g
h

p
u

t

0%

20%

40%

60%

80%

100%

R25 G24 G25 TW FR GSH SK UK K28
0%

20%

40%

60%

80%

100%

R25 G24 G25 TW FR GSH SK UK K28N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

(a) Two-FPGA setting

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

0%

20%

40%

60%

80%

100%

R25 G24 G25 TW FR GSH SK UK K28
0%

20%

40%

60%

80%

100%

R25 G24 G25 TW FR GSH SK UK K28N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

(b) Four-FPGA setting

Fig. 15. Network sensitivity evaluation.

reductions of up to 9.3% on two FPGAs and 31.2% on four FPGAs. At 25 Gbps, throughput drops by
up to 36.9% on two FPGAs and 54.6% on four FPGAs. This highlights the effectiveness of Clementi’s
communication-computation overlap, which tolerates the network bandwidth reductions.

7.9 Skewness Sensitivity Evaluation
To evaluate the impact of skewness in graph datasets, we conducted experiments using the synthetic
RMAT [25] dataset R25, which features a uniform distribution and varying average degrees. We
employed the PageRank algorithm to assess both performance and scalability. The experiments
were performed on configurations of 2, 4, and 6 FPGAs.

Table 11. Throughput (MTEPS) with different average degree

Degree of RMAT [25] 2 4 8 16 32 64
2 FPGAs 935 1546 2153 3219 7728 8075
4 FPGAs 1443 2519 4204 6172 13722 15430
6 FPGAs 1740 2938 5316 7818 14575 15400

The results in Table 11 show that Clementi’s performance varies with the degree distribution
of the graph. For sparse graphs with very low edge-to-vertex ratios, Clementi’s performance is
constrained by increased loading overhead, as its edge-centric processing model requires loading a
substantial portion of vertex properties along with the edge list. Additionally, duplicating the entire
vertex set across each FPGA further exacerbates memory limitations, particularly for large-vertex
datasets such as web-scale graphs. For high-degree graphs, which are common in real-world graphs
such as social networks and web graphs, Clementi achieves better performance, peaking at 15.4
GTEPS. The limited scalability arises from the R25 dataset’s 32 subgraphs, which are difficult to
distribute evenly across four or more FPGAs, causing workload imbalance. In contrast, larger
graphs with a greater number of subgraphs facilitate more balanced workload distribution, thereby
improving scalability and overall performance with increased FPGA numbers.

7.10 Comparison between Remote-scatter and Remote-apply Patterns
This section compares the Remote-scatter (RS) and Remote-apply (RA) patterns, focusing on FPGA-
side memory consumption and end-to-end performance. The RS pattern performs remote accesses
to vertex data during the scatter stage, transmitting only vertex properties not present on the current
FPGA while updating vertex data locally. In contrast, Clementi adopts RA pattern, synchronizing
vertex updates during the apply stage, which can be overlapped to minimize communication cost.

The impact of vertex replication on FPGA-side memory is summarized in Table 12. The results
indicate an average memory usage increase of 1.12×, 1.24×, and 1.37× under two-, four-, and
six-FPGA configurations, respectively. This vertex replication limits the graph size that can be

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:23

Table 12. Memory consumption comparison

Design # of Memory consumption under different datasets (Gbytes)
nodes R25 G24 G25 TW FR GSH SK UK K28

RS pattern 2-6‡ 4.46 4.14 8.13 11.81 14.60 14.65 15.63 30.05 69.21

Clementi
2 5.37 4.45 8.74 13.09 16.60 16.58 17.22 33.31 77.31
4 6.45 4.73 9.28 14.42 18.80 18.68 18.84 36.70 85.90
6 7.52 5.02 9.82 15.75 21.00 20.78 20.46 40.09 94.49

‡ Memory consumption remains consistent regardless of the number of nodes.

managed by Clementi, as defined by the formulation: (E + N × V) < N × M, where the E is the
memory consumption of edge and V is the memory consumption of vertex properties, M is the
memory capacity per FPGA, and N is the number of FPGAs.

When performing the remote-scatter pattern, the limited on-chip memory capacity requires the
vertex set to be loaded in chunks that fit within the available memory. For example, a single U250
FPGA’s on-chip memory (including URAM and BRAM) can only store a maximum of 6.75M vertices,
including both vertex indices and properties, which is significantly smaller than the large-scale
graphs described in Table 1. Therefore, before edge processing, vertex data must be divided into
chunks and loaded from off-chip memory. For vertex chunks not currently stored on the FPGA,
remote vertex access is issued through the network stack.
To optimize remote vertex access, we set the chunk size to 1M vertices to improve bandwidth

utilization of the network and off-chip memory when handling large data volumes. However,
remote vertex access across two FPGAs still incurs a time cost 6.63× higher than direct network data
transmission. This overhead is primarily caused by additional operations such as sending requests
and performing off-chip memory accesses, which add complexity beyond the straightforward
process of receiving responses during direct data transmission.

To further investigate the end-to-end performance differences between the RS and RA patterns,
we conduct experiments under a two-FPGA setting. Figure 16 provides a breakdown of the execution
time for the RS pattern, revealing that remote vertex access operations constitute an average of
61.7% of the total graph processing time, while the remaining time is allocated to loading the
local edge list and performing on-chip gather and apply operations. Moreover, Figure 17 compares
the end-to-end performance of the RS and RA patterns, showing that the RA pattern achieves an
average performance improvement of 1.99× over the RS pattern. In conclusion, although the RA
pattern in Clementi demands higher FPGA-side memory consumption due to vertex duplication, it
delivers significantly superior performance compared to the RS pattern.

3793

7108

4888

1606
944

1545

6828

3621

1898

7601
8459

7702

4045

2951 3296

5589
5075

5995

500

2,500

4,500

6,500

8,500

10,500

R25 G24 G25 TW FR GSH SK UK K28

M
T

E
P

S

Remote-scatter Clementi

0%

50%

100%

R25 G24 G25 TW FR GSH SK UK K28

N
o

rm
a

li
ze

d

E
x

ec
u

ti
o

n
 T

im
e

Remote vertex access Edge loading + gather + apply

Fig. 16. Normalized execution time breakdown for
RS pattern under two-FPGA setting.

3793

7108

4888

1606
944

1545

6828

3621

1898

7601
8459

7702

4045

2951 3296

5589
5075

5995

500

2,500

4,500

6,500

8,500

10,500

R25 G24 G25 TW FR GSH SK UK K28

M
T

E
P

S

Remote-scatter Clementi

0%

50%

100%

R25 G24 G25 TW FR GSH SK UK K28

N
o

rm
a

li
ze

d

E
x

ec
u

ti
o

n
 T

im
e

Remote vertex access Edge loading + gather + apply

Fig. 17. Throughput comparison between RS and RA
patterns under two-FPGA setting.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

138:24 Feng Yu et al.

8 Future work
Despite the advancements presented in Clementi, several application scenarios still need further
investigation. These include:
Memory consumption optimization: Vertex compression techniques, including advanced

data encoding schemes and adaptive compression methods, will be explored in Clementi to reduce
memory consumption and address memory capacity limitations.

Dynamic graph processing: Clementi is primarily designed for processing static graph struc-
tures. For dynamic graph, Clementi employs a batching approach for graph updates, which requires
a high-cost repartitioning stage for the entire graph dataset. As part of our future work, we aim to
explore techniques for incremental updates. The core idea is to develop a novel partitioning algo-
rithm that recalculates only the affected subgraphs, thereby avoiding the need for full reprocessing.
Furthermore, we plan to integrate Packed Memory Arrays to manage dynamic edge insertions.

9 Related Work
Current FPGA-based graph processing contains single FPGA-based and multiple FPGA-based
designs. In 2016, Dai et al. proposed FPGP [12], which uses an interval-shard method to partition
large graphs into sub-partitions that can be stored by on-chip RAMs to be processed by parallel
processors. Shao proposed FabGraph [42], which uses a two-level vertex caching mechanism on
FPGA-DRAM platforms to reduce the amounts of vertex data transmissions and pipeline stalls
during the execution of graph algorithms using on-chip BRAM and URAM. MiKhil used a non-
blocking cache design [3] to handle tens of thousands of outstanding read misses to increase the
ability of the memory system. By coalescing accesses from multiple accelerators into fewer DRAM
memory requests, they can achieve similar performance as the large capacity caches with lower
cost. Chen et. al. proposed ThunderGP [11], optimizing the graph processing with a pipelined
edge-centric GAS model. In 2022, Chen et. al. proposed ReGraph [10] that utilizes the high memory
bandwidth of HBM with heterogeneous pipelines. GraphLily [19] provides a graph linear algebra
overlay, to accelerate graph processing on HBM-equipped FPGAs.
For Multi-FPGA based designs, Dai et al. proposed ForeGraph [13], which uses vertex-centric

interval-shard graph partition methods in the partition stage and extended the single FPGA-based
framework into multi-FPGAs with the adoption of Microsoft Catapult [7]. In 2019, Nina et. al.
proposed GraVF-M [14], in which multiple FPGAs connected through PCI-e and incorporated
filtering delivery to reduce communication overhead, as well as a floating barrier to mitigate
workload imbalance. Wu et. al. proposed FDGLib [48], a communication library that enables graph
processing in data centers, also based on Microsoft Catapult [7].

10 Conclusion
In conclusion, this paper presents Clementi, an efficient multi-FPGA-based graph processing
framework designed to address the poor scalability of the state-of-the-art systems. Clementi
provides hardware/software co-design method to mitigate communication overhead and workload
imbalance among FPGAs. Experimental results demonstrate that Clementi out-performs SOTA
multi-FPGA designs by as much as 8.75×, achieving near-linear scalability.

Acknowledgments
This work is supported in part by the Ministry of Education AcRF Tier 2 grant, Singapore (MOE-
T2EP20121-0016), and a Google South & Southeast Asia Research Award. We also thank the AMD
Heterogeneous Accelerated Compute Clusters (HACC) program [2] for the generous hardware
donation. Yao Chen from the National University of Singapore is the corresponding author.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:25

References
[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad Jamour. 2016. ScaleMine: Scalable

Parallel Frequent Subgraph Mining in a Single Large Graph. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE, 716–727. doi:10.1109/SC.2016.60

[2] AMD Xilinx 2024. Heterogeneous Accelerated Compute Cluster (HACC) at NUS. https://xacchead.d2.comp.nus.edu.sg/.
[3] Mikhail Asiatici and Paolo Ienne. 2021. Large-scale graph processing on FPGAs with caches for thousands of

simultaneous misses. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE,
609–622.

[4] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered label propagation: A multiresolution
coordinate-free ordering for compressing social networks. In Proceedings of the 20th international conference on World
Wide Web. 587–596.

[5] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compression Techniques. In Proc. of the
Thirteenth International World Wide Web Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[6] Erik G Boman, Karen Dragon Devine, and Sivasankaran Rajamanickam. 2014. 2D Partitioning for Scalable Matrix
Computations on Scale-Free Graphs. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States).

[7] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael Haselman, Stephen Heil,
Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale acceleration architecture. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–13. doi:10.1109/MICRO.2016.7783710

[8] Linchuan Chen, Xin Huo, Bin Ren, Surabhi Jain, and Gagan Agrawal. 2015. Efficient and Simplified Parallel Graph
Processing over CPU and MIC. In 2015 IEEE International Parallel and Distributed Processing Symposium. 819–828.
doi:10.1109/IPDPS.2015.88

[9] Xinyu Chen, Ronak Bajaj, Yao Chen, Jiong He, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2019. On-The-Fly
Parallel Data Shuffling for Graph Processing on OpenCL-Based FPGAs. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). 67–73. doi:10.1109/FPL.2019.00020

[10] Xinyu Chen, Yao Chen, Feng Cheng, Hongshi Tan, Bingsheng He, and Weng-Fai Wong. 2022. ReGraph: Scaling Graph
Processing on HBM-enabled FPGAs with Heterogeneous Pipelines. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1342–1358. doi:10.1109/MICRO56248.2022.00092

[11] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2021. ThunderGP: HLS-Based
Graph Processing Framework on FPGAs. In The 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (Virtual Event, USA) (FPGA ’21). Association for Computing Machinery, New York, NY, USA, 69–80.
doi:10.1145/3431920.3439290

[12] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. FPGP: Graph Processing Framework on FPGA A Case
Study of Breadth-First Search. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (Monterey, California, USA) (FPGA ’16). Association for Computing Machinery, New York, NY, USA,
105–110. doi:10.1145/2847263.2847339

[13] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong Yang. 2017. ForeGraph: Exploring
Large-Scale Graph Processing on Multi-FPGA Architecture. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’17). Association for Computing
Machinery, New York, NY, USA, 217–226. doi:10.1145/3020078.3021739

[14] Nina Engelhardt and Hayden K.-H. So. 2019. GraVF-M: Graph Processing System Generation for Multi-FPGA Platforms.
ACM Trans. Reconfigurable Technol. Syst. 12, 4, Article 21 (nov 2019), 28 pages. doi:10.1145/3357596

[15] Zhisong Fu, Michael Personick, and Bryan Thompson. 2014. MapGraph: A High Level API for Fast Development of
High Performance Graph Analytics on GPUs. In Proceedings of Workshop on GRAph Data Management Experiences
and Systems (Snowbird, UT, USA) (GRADES’14). Association for Computing Machinery, New York, NY, USA, 1–6.
doi:10.1145/2621934.2621936

[16] Abdullah Gharaibeh, Tahsin Reza, Elizeu Santos-Neto, Lauro Beltrao Costa, Scott Sallinen, and Matei Ripeanu. 2013.
Efficient large-scale graph processing on hybrid CPU and GPU systems. arXiv preprint arXiv:1312.3018 (2013).

[17] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA, 17–30.

[18] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin yu Chen, Xiao-Fei Liao, and Hai Jin. 2019. A Survey on
Graph Processing Accelerators: Challenges and Opportunities. Journal of Computer Science and Technology 34 (Feb.
2019), 339–371. doi:10.1007/s11390-019-1914-z

[19] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Accelerating Graph Linear Algebra on
HBM-Equipped FPGAs. In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1–9. doi:10.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

https://doi.org/10.1109/SC.2016.60
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/IPDPS.2015.88
https://doi.org/10.1109/FPL.2019.00020
https://doi.org/10.1109/MICRO56248.2022.00092
https://doi.org/10.1145/3431920.3439290
https://doi.org/10.1145/2847263.2847339
https://doi.org/10.1145/3020078.3021739
https://doi.org/10.1145/3357596
https://doi.org/10.1145/2621934.2621936
https://doi.org/10.1007/s11390-019-1914-z
https://doi.org/10.1109/ICCAD51958.2021.9643582
https://doi.org/10.1109/ICCAD51958.2021.9643582

138:26 Feng Yu et al.

1109/ICCAD51958.2021.9643582
[20] Intel. 2024. Intel turbostat. https://www.linux.org/docs/man8/turbostat.html.
[21] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken. 2017. A distributed multi-gpu

system for fast graph processing. Proceedings of the VLDB Endowment 11, 3 (2017), 297–310.
[22] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM Journal on scientific Computing 20, 1 (1998), 359–392.
[23] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha: Vertex-Centric Graph Processing on

GPUs. In Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing
(Vancouver, BC, Canada) (HPDC ’14). Association for Computing Machinery, New York, NY, USA, 239–252. doi:10.
1145/2600212.2600227

[24] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news
media?. In Proceedings of the 19th international conference on World wide web. 591–600.

[25] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. 2010. Kronecker
graphs: an approach to modeling networks. Journal of Machine Learning Research 11, 2 (2010).

[26] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network dataset collection.
[27] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. 2014. Mining of massive datasets. Cambridge University

Press.
[28] Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph traversal on GPUs. In SC ’15: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis. 1–12. doi:10.1145/2807591.
2807594

[29] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012.
Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. Proc. VLDB Endow. 5, 8 (apr
2012), 716–727. doi:10.14778/2212351.2212354

[30] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. 2010. Pregel: A System for Large-Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10). Association for Computing
Machinery, New York, NY, USA, 135–146. doi:10.1145/1807167.1807184

[31] Microsoft Azure. Accessed: January 2025. Microsoft Azure Pricing Calculator. https://azure.microsoft.com/en-
us/pricing/calculator/.

[32] Microsoft Azure. Accessed: January 2025. Microsoft Azure Virtual Machines Documentation.
https://learn.microsoft.com/zh-cn/azure/virtual-machines/.

[33] NVIDIA [n. d.]. Nvidia system management interface. https://developer.nvidia.com/nvidia-system-management-
interface.

[34] Tayo Oguntebi and Kunle Olukotun. 2016. GraphOps: A Dataflow Library for Graph Analytics Acceleration. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
February 21-23, 2016, Deming Chen and Jonathan W. Greene (Eds.). ACM, 111–117. doi:10.1145/2847263.2847337

[35] Open MPI [n. d.]. Open MPI: Open Source High Performance Computing. https://www.open-mpi.org/.
[36] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi

Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir
Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. 2015. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services. IEEE Micro
35, 3 (2015), 10–22. doi:10.1109/MM.2015.42

[37] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with interactive graph analytics and visualization.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 29.

[38] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. 2015. Chaos: Scale-out Graph
Processing from Secondary Storage. In Proceedings of the 25th Symposium on Operating Systems Principles (Monterey,
California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 410–424. doi:10.1145/2815400.
2815408

[39] Amin Sahebi, Marco Barbone, Marco Procaccini, Wayne Luk, Georgi Gaydadjiev, and Roberto Giorgi. 2023. Distributed
large-scale graph processing on FPGAs. Journal of Big Data 10, 1 (2023), 95.

[40] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber Hassaan,
Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey. 2014. Navigating the maze of graph analytics frameworks
using massive graph datasets. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA, 979–990.
doi:10.1145/2588555.2610518

[41] Ravi Sethi. 1977. On the complexity of mean flow time scheduling. Mathematics of Operations Research 2, 4 (1977),
320–330.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

https://doi.org/10.1109/ICCAD51958.2021.9643582
https://doi.org/10.1109/ICCAD51958.2021.9643582
https://doi.org/10.1109/ICCAD51958.2021.9643582
https://doi.org/10.1145/2600212.2600227
https://doi.org/10.1145/2600212.2600227
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1145/2807591.2807594
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2847263.2847337
https://doi.org/10.1109/MM.2015.42
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2588555.2610518

Clementi: Efficient Load Balancing and Communication Overlap for Multi-FPGA Graph Processing 138:27

[42] Zhiyuan Shao, Ruoshi Li, Diqing Hu, Xiaofei Liao, and Hai Jin. 2019. Improving Performance of Graph Processing on
FPGA-DRAM Platform by Two-Level Vertex Caching. In Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery, New York,
NY, USA, 320–329. doi:10.1145/3289602.3293900

[43] Xuanhua Shi, Xuan Luo, Junling Liang, Peng Zhao, Sheng Di, Bingsheng He, and Hai Jin. 2018. Frog: Asynchronous
Graph Processing on GPU with Hybrid Coloring Model. IEEE Transactions on Knowledge and Data Engineering 30, 1
(2018), 29–42. doi:10.1109/TKDE.2017.2745562

[44] Wonseok Shin, Siwoo Song, Kunsoo Park, and Wook-Shin Han. 2024. Cardinality Estimation of Subgraph Matching:
A Filtering-Sampling Approach. Proceedings of the VLDB Endowment 17, 7 (2024), 1697–1710. doi:10.14778/3583140.
3583155

[45] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D. Owens. 2016. Gunrock:
A High-Performance Graph Processing Library on the GPU. SIGPLAN Not. 51, 8, Article 11 (feb 2016), 12 pages.
doi:10.1145/3016078.2851145

[46] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkersdorf. 2015. Enabling FPGAs in
Hyperscale Data Centers. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom). 1078–1086. doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199

[47] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph Processing by Graph Ordering. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association
for Computing Machinery, New York, NY, USA, 1813–1828. doi:10.1145/2882903.2915220

[48] Yu-Wei Wu, Qing-Gang Wang, Long Zheng, Xiao-Fei Liao, Hai Jin, Wen-Bin Jiang, Ran Zheng, and Kan Hu. 2021.
FDGLib: A Communication Library for Efficient Large-Scale Graph Processing in FPGA-Accelerated Data Centers.
Journal of Computer Science and Technology 36 (Oct. 2021), 1051–1070. doi:10.1007/s11390-021-1242-y

[49] Xilinx [n. d.]. Vitis HLS. https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html.
[50] Xilinx. 2021. U250 Data Center Accelerator Card. https://www.xilinx.com/products/boards-and-kits/alveo/u250.html.
[51] Xilinx 2021. Vitis Xbutil. https://xilinx.github.io/XRT/master/html/xbutil.html.
[52] Xilinx. 2022. xup_vitis_network_example. https://github.com/Xilinx/xup_vitis_network_example.
[53] Fan Zhang, Long Zheng, Xiaofei Liao, Xinqiao Lv, Hai Jin, and Jiang Xiao. 2022. An Effective 2-Dimension Graph

Partitioning for Work Stealing Assisted Graph Processing on Multi-FPGAs. IEEE Transactions on Big Data 8, 5 (2022),
1247–1258. doi:10.1109/TBDATA.2020.3035090

[54] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe, and Alexander S. Szalay. 2015. FlashGraph:
Processing Billion-Node Graphs on an Array of Commodity SSDs. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies (Santa Clara, CA) (FAST’15). USENIX Association, USA, 45–58.

[55] Jianlong Zhong and Bingsheng He. 2014. Medusa: A Parallel Graph Processing System on Graphics Processors.
SIGMOD Rec. 43, 2 (dec 2014), 35–40. doi:10.1145/2694413.2694421

[56] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and QingWu. 2019. HitGraph: High-throughput
Graph Processing Framework on FPGA. IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019), 2249–2264.
doi:10.1109/TPDS.2019.2910068

[57] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A {Computation-Centric} Distributed
Graph Processing System. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
301–316.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 138. Publication date: June 2025.

https://doi.org/10.1145/3289602.3293900
https://doi.org/10.1109/TKDE.2017.2745562
https://doi.org/10.14778/3583140.3583155
https://doi.org/10.14778/3583140.3583155
https://doi.org/10.1145/3016078.2851145
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://doi.org/10.1145/2882903.2915220
https://doi.org/10.1007/s11390-021-1242-y
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://github.com/Xilinx/xup_vitis_network_example
https://doi.org/10.1109/TBDATA.2020.3035090
https://doi.org/10.1145/2694413.2694421
https://doi.org/10.1109/TPDS.2019.2910068

	Abstract
	1 Introduction
	2 Preliminary
	2.1 GAS Execution Model
	2.2 Graph Partition

	3 Challenges and Motivations
	4 Clementi Overview
	5 Clementi Architecture Details
	5.1 Gather-Scatter Module
	5.2 Global Apply Module
	5.3 Network Stack Module

	6 Clementi Runtime
	6.1 Performance Model
	6.2 Balanced Workload Scheduling
	6.3 Input-Aware Partitioning

	7 Experimental Results
	7.1 Experimental Setting
	7.2 Resource Utilization and Frequency
	7.3 Performance Model Evaluation
	7.4 Input-aware Partition Time Cost
	7.5 Overall Performance Evaluation
	7.6 Scalability Evaluation
	7.7 Performance Comparison with SOTA
	7.8 Network Bandwidth Sensitivity Evaluation
	7.9 Skewness Sensitivity Evaluation
	7.10 Comparison between Remote-scatter and Remote-apply Patterns

	8 Future work
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

