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Graph dynamic random walks (GDRWs) have recently emerged as a powerful paradigm for graph analytics
and learning applications, including graph embedding and graph neural networks. Despite the fact that
many existing studies optimize the performance of GDRWs on multi-core CPUs, massive random memory
accesses and costly synchronizations cause severe resource underutilization, and the processing of GDRWs
is usually the key performance bottleneck in many graph applications. This paper studies an alternative
architecture, FPGA, to address these issues in GDRWs, as FPGA has the ability of hardware customization
so that we are able to explore fine-grained pipeline execution and specialized memory access optimizations.
Specifically, we propose LightRW, a novel FPGA-based accelerator for GDRWs. LightRW embraces a series of
optimizations to enable fine-grained pipeline execution on the chip and to exploit the massive parallelism
of FPGA while significantly reducing memory accesses. As current commonly used sampling methods in
GDRWs do not efficiently support fine-grained pipeline execution, we develop a parallelized reservoir sampling
method to sample multiple vertices per cycle for efficient pipeline execution. To address the random memory
access issues, we propose a degree-aware configurable caching method that buffers hot vertices on-chip to
alleviate random memory accesses and a dynamic burst access engine that efficiently retrieves neighbors.
Experimental results show that our optimization techniques are able to improve the performance of GDRWs
on FPGA significantly. Moreover, LightRW delivers up to 9.55× and 9.10× speedup over the state-of-the-art
CPU-based MetaPath and Node2vec random walks, respectively. This work is open-sourced on GitHub at
https://github.com/Xtra-Computing/LightRW.

CCS Concepts: • Hardware → Hardware accelerators; • Information systems → Query operators;
• Computer systems organization→ Data flow architectures; • Mathematics of computing→ Graph
algorithms.

Additional Key Words and Phrases: FPGA accelerator; parallel weighted reservoir sampling; random walk on
graphs.
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1 INTRODUCTION
Random walk on graphs has been widely adopted by many applications, such as the recommen-
dation system [23], bioinformatics [60], and network analysis [39]. Due to the ineffectiveness of
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Fig. 1. Processing flow of GDRW on CPUs.
traditional random walk algorithms (i.e., uniform random walk and DeepWalk [44], etc.) in extract-
ing temporal relations with structural information of the graph, graph dynamic random walks
(GDRWs) have attracted increasing attention [19, 25, 26, 42, 58, 59]. For example, Node2Vec [25]
has been widely used to generate graph embeddings for downstream machine learning models [42],
and MetaPath [19] plays an important role in knowledge graph analytics [66]. However, due to
inherent random memory accesses and high computational complexity, GDRWs generally domi-
nate the overall execution time of these applications. For example, the state-of-the-art approach,
ThunderRW by Sun et al. [54], showed that Node2Vec [25] can take up to two hours on a graph of
41 million vertices and 1.21 billion edges on a modern multi-core machine. Due to the explosive
growth of graph data and the rising popularity of GDRWs in numerous applications, there is an
urgent need to accelerate the performance of GDRWs.

Extensive efforts [54, 65] have been made to optimize GDRWs on multicore CPUs. For example,
Yang et al. [65] explore the parallelism of GDRWs in a distributed environment by efficient graph
partitioning techniques. ThunderRW [54] develops a stage design and interleaves memory accesses
from massive queries for high memory efficiency and achieves state-of-the-art performance on
modern CPU hardware. Random walk queries are processed concurrently with multiple threads,
and each thread handles different queries with the execution flow illustrated in Figure 1. For a
query starting from vertex A in graph G to move one step forward, weight_calculation traverses all
neighbors of A at the start and then calculates the sampling weights using an application-specific
weight update function F , e.g., the sampling weights of vertex B, C and D ({4,9,1}) are calculated
by F with the corresponding edge weights {3,1,4} and the current state 𝑡 . Then, weighted random
sampling is conducted in two procedures. First, initialization builds an indexing table from the
sampling weight, which describes the distribution of all neighbors and is stored in global memory.
Second, generation generates uniformly distributed random samples to index the corresponding
vertex. Then, the indexed vertex C is marked as the starting vertex for the next step. This process
is repeated until it satisfies a specific termination condition, such as a target length being reached.

Despite those existing studies and optimizations for multi-core architectures, there are fundamen-
tal limitations in microarchitecture level to implementing GDRWs on multicore CPUs efficiently.
Our comprehensive profiling on ThunderRW shows that even with advanced optimizations such
as explicit memory prefetching, 59.9% of execution cycles are still stalled by memory accesses,
with a cache miss ratio as high as 58.2% (see more details in Section 2.3). The irregular nature of
graphs [49] results in GDRWs having extremely poor spatial and temporal locality, rendering the
multicore’s complex cache hierarchy ineffective. Moreover, GDRWs on multicore architectures
have to be executed in stages, with barriers required at the end of each stage. Intermediate data
need to be written to DRAM after the execution of one stage and read again for the next stage.

This paper studies an alternative architecture, FPGA, to address those issues in GDRWs. Different
from the multicore CPUs that have fixed architectures with a deep cache hierarchy, FPGAs have
the flexibility to customize hardware logic, which allows us to explore novel execution schemes
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such as pipeline execution on chip with fine-grained inter-stage communication (referred to herein
as fine-grained pipeline execution) to minimize data movement overhead and design specialized
memory engines to handle random memory accesses in GDRWs efficiently. Specifically, we propose
LightRW, the first FPGA-based acceleration framework for efficient GDRWs. LightRW creates a fully
pipelined and parallelized FPGA-based accelerator system for GDRWs. The major contributions of
our LightRW framework are as follows:
• We design a parallelized Weighted Reservoir Sampling (WRS) on FPGA, which is able to process
multiple vertices per cycle and enables fine-grained communication between stages so that the
different stages are executed in parallel and communicate within the chip without retrieving the
DRAM.
• We propose two memory efficient techniques to handle notorious random accesses to neighbors
of vertices: 1) a degree-aware cache keeps high-degree vertices associated data (e.g., address of
their neighbors) into on-chip memory at runtime, and 2) a burst access engine adjusts the burst
access size to minimize redundant data access for higher memory bandwidth utilization.
• Our evaluation of LightRW on a server with an FPGA board attached to the PCIe interface
outperforms the state-of-the-art CPU-based implementation [54] by up to 9.55× and 9.10× on
MetaPath [55] and Node2Vec [25], even with the consideration of the data transfer overhead
over PCIe, respectively. Furthermore, LightRW is 15× ∼ 26× more power efficient than the
state-of-the-art CPU-based implementation.
The rest of the paper is organized as follows. We introduce the background and motivation

in Section 2. Section 3 presents the overview of LightRW, including the proposed pipelined
GDRW algorithm and hardware architecture. While Section 4 illustrates the design of the parallel
WRS sampler, Section 5 introduces two GDRW specific memory optimizations. We present the
experimental results in Section 6 and related works in Section 7. This paper is concluded in Section 8.

2 BACKGROUND ANDMOTIVATION
In this section, we introduce the background of graph dynamic random walks, discuss the state-
of-the-art CPU-based solutions and motivate our FPGA-based accelerator design according to the
analysis on performance bottlenecks of CPU-based solutions.

2.1 Graph Dynamic RandomWalks
Let𝐺 = {𝑉 , 𝐸} represent a directed graph with |𝑉 | vertices and |𝐸 | edges. 𝑁 (𝑢) is refered to a set of
all neighbors of 𝑢, and |𝑁 (𝑢) | be the total number of neighbors (the degree). Let 𝑑+𝑢 and 𝑑−𝑢 be the
out-degree and in-degree of 𝑢 respectively The undirected graphs are supported by representing
each undirected edge with two directed edges with the same two vertices. The edge between the
vertex 𝑢 and the vertex 𝑣 is represented as (𝑢, 𝑣), and the corresponding edge weight is represented
by𝑤∗𝑢,𝑣 , in the case of unweighted graphs,𝑤∗𝑢,𝑣 = 1.

A random walk on a graph begins at a starting vertex and moves to a randomly selected neighbor
of the currently residing vertex at each step. Based on how the edge (or the neighbor) is selected,
random walks are further categorized into unbiased or biased ones. The transition probability of an
edge is defined as the probability of the corresponding edge being sampled, and we refer to the
unnormalized form of the transition probability as the sampling weight. For unbiased randomwalks,
the transition probability is uniformly distributed, while for biased random walks, the transition
probability is generally related to the edge weight. Furthermore, for biased randomwalks, if the edge
weights remain constant throughout the process, they are called static random walks. In contrast,
graph dynamic random walks (GDRWs) take into account the walker’s state by updating the edge
weights at each step to recalibrate the transition probability. As in static random walks, per-edge
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transition probabilities could be calculated offline, and many existing studies take advantage of
this to simplify online calculation [44, 54, 65]. In comparison, GDRWs require more advanced
and challenging optimizations at runtime, which are the focus of this paper. Moreover, with the
modeling on the walker’s state, GDRWs are able to extract higher-order structural information and
temporal relationships in graphs. Therefore, GDRWs have attracted increasing attention for graph
learning applications.

Next, we introduce two representative GDRW algorithms: MetaPath and Node2Vec. Let𝑤𝑡
𝑎,𝑏

be
the sampling weight of edge (𝑎, 𝑏) to be sampled from the current vertex 𝑎 at step 𝑡 .𝑤𝑡

𝑎,𝑏
is updated

by an application-specific weight update function F , i.e.,𝑤𝑡
𝑎,𝑏

= F (𝑤∗
𝑎,𝑏
,𝑉𝑡−1), where 𝑉𝑡−1 is the

set of traversed vertices.
MetaPath [55] is an effective approach for data mining on heterogeneous graphs. A MetaPath
𝑀 is defined as 𝐿1

𝑅1−−→ 𝐿2
𝑅2−−→ ...

𝑅𝑡−−→ 𝐿𝑡+1, where 𝐿𝑖 is the vertex label in the 𝑖-th step, and 𝑅𝑖 is
the relation between 𝐿𝑖 and 𝐿𝑖+1 (e.g., a book is cited by an author). A MetaPath random walk
query returns a sampled path based on the given relation path R = 𝑅1, 𝑅2, ..., 𝑅𝑡 . The weight update
function is shown in Equation (1). For the 𝑡-th step, For the 𝑡-th step, the weight of the path to be
sampled is set according to whether the relationship is met, as shown in Equation (1a). Otherwise,
the corresponding weight is set to zero, indicating that the path will not be sampled in this step
(Equation (1b)).

𝑤𝑡
𝑎,𝑏

=

{
𝑤∗
𝑎,𝑏
, if ((𝑎, 𝑏) ∈ 𝐸) ∧ (𝑅 (𝑎,𝑏) = R[𝑡]),
0, otherwise.

(1a)
(1b)

Node2Vec [25] is a second-order randomwalk [15] and has been widely used as a graph embedding
technique [24]. The transition probability depends not only on the current vertex 𝑎𝑡 but also on
the previously traversed vertex 𝑎𝑡−1. The weight of neighbors depends on whether it is connected
to the last traversed vertex. In cases where the neighbor 𝑏 is the same as the vertex visited in the
previous step, the sampling weight is equal to the scaled edge weight with a hyperparameter 𝑝
(Equation (2a)). Apart from that, if there is an edge between 𝑎𝑡−1 and 𝑏, the sampling weight is
equal to the edge weight (Equation (2b)); otherwise, the sampling weight is scaled with another
factor 𝑞 in Equation (2c). Finally, for all non-neighboring vertices, the sampling weights are set to
zero (Equation (2d)).

𝑤𝑡
𝑎,𝑏

=



𝑤∗
𝑎,𝑏

𝑝
, if 𝑏 = 𝑎𝑡−1,

𝑤∗
𝑎,𝑏
, if (𝑏 ≠ 𝑎𝑡−1) ∧ ((𝑎𝑡−1, 𝑏) ∈ 𝐸),

𝑤∗
𝑎,𝑏

𝑞
, if (𝑏 ≠ 𝑎𝑡−1) ∧ ((𝑎𝑡−1, 𝑏) ∉ 𝐸),

0, otherwise.

(2a)

(2b)

(2c)

(2d)

2.2 GDRW on CPUs
The execution flow of the CPU-based GDRW [54] is shown in Algorithm 2.1. For an input query
composed of a starting vertex 𝑣curr and the requested length, the algorithm first ascertains the
number of neighbors of the current vertex 𝑣curr for indexing in Line 6. For each neighbor of 𝑣curr,
the algorithm first loads its properties (Line 8) and then updates the weight of each neighbor
using the application-specific function (Line 9). Different GDRW applications can be implemented
by customizing the application-specific weight update function. The updated weights are used
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Algorithm 2.1: CPU-based GDRWs
Input: 𝐺 : a given graph, Q: a set of input queries.
Output: 𝑉𝑡 : a path of traversed vertices.

1 res = ∅;
2 foreach 𝑄 ∈ Q do
3 𝑣curr = 𝑄.𝑣start, 𝑄.res = ∅;
4 loop
5 𝑤sum = 0,𝑊 = ∅, 𝑁𝑣 = ∅ ;

/* weight_calculation */

6 {address, degree} = get_neighbors_info(𝑣curr,𝐺);
7 for 𝑖 ← 1 to degree do
8 𝑁 𝑖

𝑣 = get_neighbor(address, 𝑖,𝐺);
9 𝑤 𝑖

𝑣 = app_weight_update(𝑁 𝑖
𝑣, 𝑣curr);

10 𝑊 .push(𝑤 𝑖
𝑣);

/* weighted_sampling */

11 𝑇 = initialization(𝑊 ) ; // O(n) time complexity

12 𝑣curr = generation(𝑇 );
13 𝑄.res.push(𝑣curr);
14 if (𝑄.is_end()) then
15 res.push(𝑄.res);
16 break;

17 return res;

to implicitly calculate the transition probability, which is the probability of the neighbors to be
selected.

In the next stage, weighted sampling draws one sample based on the generatedweight distribution
𝑊 . This process is carried out in two phases: initialization and generation, which are commonly
used in sampling methods including inverse transformation sampling [54] and alias sampling [29].
Since the updated weight is discretely distributed, the initialization stage constructs an intermediate
table 𝑇 that describes the distribution of𝑊 , which allows for the sampling of weighted items with
uniformly distributed random numbers (Line 11). Finally, in Lines 12 and 13, the generation stage
randomly draws one neighbor based on 𝑇 and appends it to the output sequence 𝑄.𝑟𝑒𝑠 , which
is then set as 𝑣curr for the next iteration. This process is repeated until 𝑣𝑐𝑢𝑟𝑟 satisfies the given
terminal state (e.g., the required path length). The state-of-the-art CPU-based system [54] adopts
multiple threads to process different batches of queries in parallel. Each stage of a query is executed
sequentially and interleaved with memory accesses using one thread, such that the latency of
random access overlaps with computation.

2.3 Inefficiencies of CPU-based GDRWs
To further investigate performance potentials on multi-core architectures, we have conducted a
top-down performance analysis [17] of the state-of-the-art CPU-based system, ThunderRW [54]. In
particular, we evaluated MetaPath and Node2Vec with two widely used graphs in previous studies,
livejournal [35] and uk-2002 [9], on a server equipped with the latest Intel Xeon Gold 6246R CPU.
We used vTune [17] to profile the last-level cache miss ratio (denoted as "LLC Miss"), the proportion
of cycles stalled by memory accesses (denoted as "Memory Bound"), and the proportion of cycles
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Table 1. Profiling results of the state-of-the-art CPU-based system [54] on MetaPath and Node2Vec.

Applications Graphs LLC
Miss

Memory
Bound

Retiring
Ratio

MetaPath liveJournal [35] 58.2% 59.9% 8.2%
uk-2002 [9] 61.8% 57.5% 13.7%

Node2Vec liveJournal [35] 76.9% 31.2% 23.3%
uk-2002 [9] 61.1% 31.7% 33.6%

used for useful computations (denoted as "Retiring Ratio"). More details about the experimental
setup can be found in Section 6.
The profiling results show that the LLC miss ratio is very high (up to 76.9%), and the memory

bound ranges from 31.2% to 59.9% for the two graphs in both applications. Subsequently, the retiring
ratio is only 8.2% ∼ 33.6%, indicating poor utilization of CPU cores. In summary, memory accesses
dominate the overall execution time for CPU-based GDRWs. Based on the execution flow on CPUs
and the characteristics of GDRW, there are two key observations for the inefficiency:
Inefficiency 1: The sequential executionflowonCPUs introduces a large number ofmem-
ory accesses. The three stages of GDRW are executed in sequence with barriers required at each
stage on control flow-based multicore CPUs. Here, we provide a quantitative analysis of the num-
ber of memory accesses introduced by intermediate data access. The weight update stage of the
neighbors requires storing updated weights with the size of |𝑁 (𝑣curr) | in memory. During the
initialization stage, the updated weights are read and, a temporary data structure 𝑇 is created with
a size of |𝑁 (𝑣curr) |. Therefore, in addition to the output results, the entire process ideally requires
2×|𝑁 (𝑣curr) | memory accesses. However, since the computations involved are typically lightweight,
the costs of memory access cannot be overlapped. As a result, memory access tends to dominate
the overall execution time.
Inefficiency 2: Irregular memory accesses are poorly handled. Due to the irregular nature
of graphs, GDRW introduces massive irregular memory accesses, including random access to the
addresses of neighbors of a vertex and access to varying numbers of neighbors, leading to poor data
locality. Additionally, the size of intermediate data for existing weighted sampling methods (i.e.,
alias table [29] and inverse transform distribution table [61], etc.) is proportional to the number
of neighbors. For large graphs, the space required to cache neighbors of different nodes varies
significantly, which easily exceeds the capacity of any CPU cache, leading to cache thrashing. This
results in significant cache misses and CPU core stalls. Moreover, with multiple queries executed
with multiple threads, concurrent prefetching in the shared last-level cache exacerbates the memory
access contention and cache thrashing.

2.4 Motivation and Design Rationales
The inefficiencies mentioned above are fundamentally caused by the sequential execution flow on
multicore architectures and the mismatch between the memory access pattern of GDRW and the
current cache hierarchy of multi-core architectures. It is clear that a "one size fits all" approach is not
suitable. There is a need for a specialized solution in terms of both the algorithm and architecture.
This paper studies radical and alternative architectures, starting with FPGA, a commodity hardware
for specialized designs.
With the flexibility to customize hardware logic, FPGAs have demonstrated promising perfor-

mance in many data-intensive applications [11–14, 27, 68]. Among them, a common optimization
technique is fine-grained pipelining, which instantiates hardware units for different tasks (e.g.,
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functional stages in GDRW) on the chip and connects hardware units through FIFOs for fine-grained
communication (e.g., a vertex per transfer). As a result, it minimizes the number of DRAM memory
accesses and increases parallelism by simultaneous execution of hardware units in comparison to
non-pipelined systems. Meanwhile, customization of the memory access engine (i.e., using scratch-
pad instead of a complex cache hierarchy on CPUs) is another source of performance improvement.
For example, the FPGA-based graph processing framework from Chen et al. [14] outperforms
state-of-the-art solutions by pipelining the Scatter and Gather functions of the GAS model [14] and
adopting application-specific memory access units. This motivates us to explore two directions to
address the inefficiencies encountered in CPU-based GDRWs:

• Pipelining different stages of GDRW on FPGAs with fine-grained inter-stage communication to
eliminate synchronization barriers and minimize data movement to DRAM.
• Designing specialized memory access engines with considerations on the irregular memory
access patterns in GDRWs for high memory bandwidth utilization.

3 LIGHTRW
With the motivation and design rationales, we introduce LightRW, an FPGA-based accelerator for
efficient GDRW.

3.1 Solution Overview
In short, the design of LightRW has two complementary approaches: 1) reducing the number
of memory accesses to DRAM by enabling fine-grained pipeline execution of GDRW on FPGAs,
and 2) handling random memory accesses efficiently with customized memory optimizations. Its
processing flow is shown in Figure 2.
LightRW eliminates the synchronization barriers of existing GDRW algorithms to enable fine-

grained pipeline execution on the chip by adopting the weighted reservoir sampling (WRS) technique
that chooses a random sample in a single pass over the items. More importantly, we parallelize
WRS to process multiple vertices per cycle for high throughput pipeline design. With fine-grained
pipeline execution, LightRW reduces the number of memory accesses to DRAM and achieves higher
spatial parallelism compared to existing GDRW solutions.

We also propose two memory-efficient techniques to handle notoriously random accesses to the
neighbors of vertices. First, according to the power law distribution of graphs, vertices with high
degrees dominate the connections and are frequently accessed. Thus, we propose a degree-aware
cache that keeps information of high-degree vertices (e.g., the addresses of their neighbors) into
on-chip memory at runtime. Second, we propose a dynamic burst access engine that adjusts the
burst access size to minimize redundant data accesses and thus improve the use of available memory
bandwidth, as the neighbors of different vertices have different lengths.
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Algorithm 3.1: Dynamic Random Walk with WRS.
Input: 𝐺 : a given graph, Q: a set of input queries.
Output: 𝑉𝑡 : a path of traversed vertices.

1 res = ∅;
2 foreach 𝑄 ∈ Q do
3 𝑣curr = 𝑄.𝑣start, 𝑄.res = ∅;
4 loop
5 {address, degree} = get_neighbors_info(𝑣curr,𝐺);
6 for 𝑖 ← 1 to degree do

/* weight_calculation */

7 𝑛𝑣 = get_neighbor(address, 𝑖,𝐺);
8 𝑤 = app_weight_update(𝑛𝑣,𝐺);

/* weighted_sampling */

9 𝑣curr = WRS(𝑛,𝑤, 𝑅);
10 𝑄.res.push(𝑣curr);
11 if (𝑄.is_end()) then
12 res.push(𝑄.res);
13 break;

3.2 Pipelining GDRWwith WRS for FPGAs
To explore the solution of fully pipelined GDRW for FPGAs, we revisit existing weighted sampling
methods. We find that weighted reservoir sampling (WRS) meets our requirements [20] as it can
choose 𝑛res random samples from a population of unknown size in a single pass over the items. In
particular, let𝑤𝑖 be the weight of the 𝑖-th item, and the probability that the 𝑖-th item is selected,
denoted as 𝑝𝑖 , is equal to its weight divided by the accumulated weights of all items passed, which
is 𝑝𝑖 = 𝑤𝑖∑𝑖

𝑚=1 𝑤𝑚
. If 𝑝𝑖 is larger than a uniformly distributed random number 𝑟𝑖 , the 𝑖-th item is then

stored in a reservoir as a candidate for output, otherwise, it is discarded. As GDRWs only need to
sample one vertex to move forward, 𝑛res is set to one.
The streaming processing nature of WRS eliminates the synchronization barrier between the

initialization and generation stages required in the existing commonly used sampling methods, such
as inverse transformation sampling and bucket-based sampling approaches [29, 43, 54]. However,
it introduces a huge computational cost, as WRS requires a random number for each item of the
input, and the generation of random numbers on CPUs is time-consuming. This computational
cost prevents WRS from being the best choice for the CPU-based GDRW system. For example,
when we adopt WRS in optimal CPU-based implementations, we observe that the performance
is 8.2 times worse. In contrast, generating massive random numbers on FPGAs is no longer a
problem. With a novel state sharing technique, ThundRiNG [56] is able to generate high-quality
and high-throughput random numbers with efficient resource utilization on FPGAs.
In this paper, we adopt WRS for GDRWs to enable fine-grained pipeline execution on FPGAs,

as shown in Algorithm 3.1. Unlike CPU-based GDRWs shown in Algorithm 2.1, the weighted
sampling method is changed to WRS. This enables us to fuse all the neighbor weight update and
sampling functions into one loop, and each function can produce and consume a single item at a
time to allow fine-grained communication between functions. We describe the detailed execution
flow as follows: First, get_neighbors_info loads {address, degree} of 𝑣curr from graph 𝐺 , where
address is the location of 𝑣𝑐𝑢𝑟𝑟 ’s neighbors in global memory, and degree is the total number of
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𝑣curr’s neighbors (Line 5). Then, a for loop scans all 𝑣curr’s neighbors and randomly selects one item
from them ( Lines 6 to 9). In the 𝑖-th iteration, it first loads the property of the 𝑖-th neighbor, 𝑁𝑣 ,
and then calculates the sampling weight with app_update_weight, which is an application-specific
function. WRS takes the updated weight as input to temporally sample one item as 𝑣next. After all
the items are enumerated, the selected 𝑣next is updated to 𝑄.𝑣curr for the next step.

The intermediate variables of these functions, which are 𝑛𝑣,𝑤 , and 𝑣next, consume𝑂 (1) space and
are stored on-chip. This is significantly smaller than the state-of-the-art execution flow required
(i.e., 𝑂 ( |𝑁 (𝑣curr) |) [54]). The proposed algorithm eliminates the synchronization barrier among
different functions. It also guarantees fine-grained pipeline execution on FPGAs, which reduces
the number of memory accesses to DRAM by fine-grained communication on-chip and improves
spatial parallelism by concurrently executing the computing stages.

3.3 Hardware Architecture
LightRW efficiently realizes the proposed GDRW on FPGAs with a highly optimized microar-
chitecture. While existing CPU-based GDRWs mainly focus on multi-query parallelization with
task interleaving and multithreading, LightRW explicitly explores parallelism within the query by
processing multiple neighbors per cycle.
Figure 3 shows an overview of LightRW’s hardware architecture, which consists of the query

controller, degree-aware cache, neighbor info loader, dynamic burst engine, weight updater, and WRS
sampler. The target graphs are stored in the FPGA’s DRAM with compressed sparse row (CSR)
format, which consists of a row_index array and a col_index array. The col_index array records
adjacent edges (sorted by destination vertex) of each vertex, while the row_index records the offset
of adjacent edges of each vertex in the col_index array. The Query Controller loads multiple queries
and prepares query metadata (e.g., the 𝑣𝑐𝑢𝑟𝑟 , query index, and application-specific parameters) for
the next stage. The Neighbor Info Loader reads the address of the neighbors (adjacent edges) of
𝑣𝑐𝑢𝑟𝑟 , namely the row_index of 𝑣𝑐𝑢𝑟𝑟 . As 𝑣𝑐𝑢𝑟𝑟 is randomly selected, the accesses to the addresses
of neighbors are random. Our proposed Degree-aware Cache caches vertices with high degrees to
improve memory efficiency (details in 5.1). The Neighbor Loader sequentially loads the neighbors of
𝑣𝑐𝑢𝑟𝑟 by dereferencing the address of neighbors. However, the number of neighbors varies according
to the vertices. The memory coalescing with a fixed burst length may result in redundant memory
accesses. Therefore, we also propose a Dynamic Burst Engine that adopts hybrid burst lengths to
maximize memory bandwidth utilization (details in 5.2). TheWeight Updater calculates the sampling
weight of the fetched neighbors using an application-specific update function. TheWRS Sampler
consumes multiple neighbors per cycle with throughput at the line rate of memory bandwidth
and samples the vertex for the next step of the current query. Details on how to parallelize WRS
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are given in Section 4. The Query Controller updates 𝑣𝑐𝑢𝑟𝑟 with the sampled vertex. All the above
hardware modules are pipelined and run concurrently.

4 PARALLELIZINGWRS
To process multiple neighbors per cycle for GDRWs, WRS has to be parallelized. However, data
dependency in calculating the probability of the item in the reservoir prevents parallelization. As
discussed in Section 3.2, the probability of the 𝑖-th item, 𝑝𝑖 , is calculated as its weight divided by the
accumulated weight of all passed items, i.e., 𝑝𝑖 = 𝑤𝑖∑𝑖

𝑚=1 𝑤𝑚
. In other words, the probability calculation

of the current item is dependent on the weights of the previously processed items, which prevents
straightforward parallelization of the probability calculation. For instance, simple loop unrolling
cannot be applied due to this dependency [28]. Existing works on paralleling WRS [29, 30] aim to
reduce the number of required random numbers for each machine in a distributed environment,
as random number generation is usually time-consuming for CPUs. On the contrary, FPGAs can
easily generate multiple independent random numbers benefiting from spatial parallelism, high-
performance bitwise operations, and flexible on-chip communication [56]. Therefore, in this paper,
we propose a new parallelized WRS algorithm and its FPGA-based implementation.

4.1 Parallel WRS Algorithm
The key idea of our proposal is to consume multiple items per cycle while carefully handling
their dependency to ensure the independence and correctness of sampling. As each item in the
stream requires the accumulated weight of all items passed, namely𝑤 𝑖

sum =
∑𝑖

𝑚=1𝑤𝑚 , we employ
a parallelized prefix sum to calculate the accumulated weights for multiple items in parallel.
Specifically, assuming that we process 𝑘 items per cycle and 𝑖 items have passed, the accumulated
weights for the current 𝑘 items can be represented by the set {∑𝑖+𝑗

𝑚=1𝑤𝑚}𝑘𝑗=1. By decomposing
the sum of the weights of the passed 𝑖 items, we have the following representation of the set
{∑𝑖+𝑗

𝑚=1𝑤𝑚}𝑘𝑗=1,

{
𝑖+𝑗∑
𝑚=1

𝑤𝑚}𝑘𝑗=1 = {
𝑖∑

𝑚=1
𝑤𝑚 +

𝑖+𝑗∑
𝑚=𝑖+1

𝑤𝑚}𝑘𝑗=1. (3)

As𝑤 𝑖
sum =

∑𝑖
𝑚=1𝑤𝑚 , which is a constant for current 𝑘 items, we have

{
𝑖+𝑗∑
𝑚=1

𝑤𝑚}𝑘𝑗=1 = {𝑤 𝑖
sum +

𝑖+𝑗∑
𝑚=𝑖+1

𝑤𝑚}𝑘𝑗=1 (4)

= 𝑤 𝑖
sum + {

𝑖+𝑗∑
𝑚=𝑖+1

𝑤𝑚}𝑘𝑗=1, (5)

where {∑𝑖+𝑗
𝑚=𝑖+1𝑤𝑚}𝑘𝑗=1 is the prefix sum of {𝑤𝑖+1,𝑤𝑖+2, ...𝑤𝑖+𝑘 } that can be calculated in parallel.

Algorithm 4.1 shows the proposed parallelized WRS that can process 𝑘 items per cycle. The
inputs consist of the item stream 𝑁𝑣 = {𝑛𝑣1, 𝑛𝑣2, ...}, weight stream𝑊 = {𝑤1,𝑤2, ...}, the degree
of parallelism 𝑘 , and 𝑘-wise independent random variables uniformly distributed in the interval
[0, 1], 𝑅 = {𝑅1, 𝑅2, ..., 𝑅𝑘 }. The algorithm reads 𝑘 items and the corresponding weights per cycle
(Line 3). Line 4 calculates the prefix sum of the 𝑘 items, which corresponds to the second term
{∑𝑖+𝑗

𝑚=𝑖+1𝑤𝑚}𝑘𝑗=1 in Equation (5), and stores it in the array𝑊𝑝𝑠 . Then, 𝑘 items are sampled con-
currently. For each item in 𝑁𝑘 , Line 7 calculates the probability of the 𝑗-th item being selected.
Next, a random number 𝑟 is sampled from the 𝑗-th random variable in 𝑅 (Line 8). If 𝑝 is smaller
than 𝑟 , its index is stored in candidate (Lines 9 to 10), indicating that the 𝑗-th item is temporarily
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Algorithm 4.1: Parallel Weighted Reservoir Sampling.
Input:

𝑁𝑣 = {𝑛𝑣1 , 𝑛𝑣2 , ...} : item stream to be sampled;
𝑊 = {𝑤1,𝑤2, ...} : corresponding weight stream;
𝑘 : degree of parallelism;
𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑘 } : k-wise independent random variables.

Output:

𝑛𝑠 : item sampled with probability of 𝑤𝑠∑
𝑊

.

1 𝑤 𝑖
sum = 0, reservoir = ∅, 𝑛𝑠 = ∅ ;

2 do
/* get 𝑘 items and corresponding weights from streams */

3 if (𝑁𝑘 = receive(𝑁𝑣, 𝑘)) ∧ (�̂�𝑘 = receive(𝑊,𝑘)) then
/* calculate the prefix sum array of �̂�𝑘 */

4 𝑊ps = prefix_sum(�̂�𝑘 );
5 candidate = ∅;
6 parallel for 𝑗 ← 1 to 𝑘

/* calculate the probability of selecting �̂�𝑘 [ 𝑗 ] */

7 𝑝 =
�̂�𝑘 [ 𝑗 ]

𝑤𝑖
𝑠𝑢𝑚+𝑊ps [ 𝑗 ]

;
8 𝑟 = 𝑅 [ 𝑗] .sample(0, 1);
9 if p > r then
10 candidate[ 𝑗] = 𝑗 ;

/* find the max index in candidate */

11 sel = max(candidate);
/* update the reservoir */

12 if 𝑠𝑒𝑙 ≠ 0 then
13 reservoir = 𝑁𝑘 [sel];

/* update 𝑤𝑖
sum value for next 𝑘 items */

14 𝑤 𝑖
sum = 𝑤 𝑖

sum + sum(�̂�𝑘 ) ;
15 𝑛𝑠 = reservoir ;
16 output 𝑛𝑠 ;
17 while 𝑁𝑣 is end;
18 return 𝑛𝑠

selected. After all 𝑘 items are processed, the maximum value in candidate, which is the index of
the latest sampled item, is outputted to update the reservoir (Lines 11 to 13). Meanwhile,𝑤 𝑖

sum is
accumulated with sum(�̂�𝑘 ) (Line 14) for the next batch of sampling. For a stream with 𝑛 items, the
time complexity of the proposed algorithm is 𝑂 (𝑛/𝑘 + log𝑘), where the functions prefix_sum(),
max(), and sum() introduce the 𝑂 (log𝑘) time complexity. Since only reservoir needs to be stored
for each 𝑘 input, the space complexity of the proposed algorithm is 𝑂 (1).
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Fig. 4. Hardware architecture of WRS Sampler.

4.2 WRS Sampler
Deploying our proposed parallel WRS algorithm on FPGAs highly relies on high-quality and high-
throughput random number generation (RNG). Therefore, we first select a suitable RNG module.
After that, we introduce the hardware architecture of the WRS Sampler module for our proposed
parallel WRS algorithm.
Selection of RNGs. RNGs can be classified into two types: true random number generations
(TRNGs)[52] and pseudo-random number generations (PRNGs)[40]. TRNGs produce unpredictable
and unreproducible outputs, while PRNGs are commonly used in randomized algorithms such as
Monte Carlo simulations [48] and graph random walks [51] to ensure the reproducibility of results.
In recent years, FPGA-based PRNGs have gained attention from both industry and academia [5, 37].
To enable high-performance WRS, we have summarized the following criteria for selecting

PRNGs: First, the PRNGs must be capable of generating multiple independent sequences of random
numbers to ensure the independent selection of the candidates in Lines 6 to 10 of Algorithm 4.1.
Second, the generation of random numbers should be fast enough to avoid blocking the overall
processing pipeline. Third, the hardware resources required to construct the PRNGs should not
constitute a severe conflict with respect to the resource demand for GDRW processing.

To meet all of the aforementioned criteria, we have selected ThunderRiNG [56] and integrated it
into our WRS pipeline, as shown in Figure 4. ThunderRiNG allows for the generation of multiple
independent sequences of random numbers while sharing the costly state generation among
different instances. Additionally, each instance adopts a decorrelator to generate a high-quality
random number sequence. ThunderRiNG also provides an easy-to-use interface for integration.
Our evaluation has demonstrated that ThunderRiNG is capable of simultaneously generating up to
64 sequences of random numbers, consuming only 1.2% of hardware resources, and passing the
most stringent empirical randomness tests [33].
WRS Sampler Hardware Architecture. Figure 4 illustrates the hardware architecture of the
WRS Sampler that realizes the proposed parallelized WRS. It includes four hardware modules:
Weight Accumulator, Selector, PRNG, and Output. To facilitate presentation, we set 𝑘 to four. The
Weight Accumulator reads 𝑘 items from the weight stream in one cycle (e.g., {2, 1, 2, 3} at time
𝑡2) and calculates the accumulated weights of 𝑘 items in two steps. First, it calculates𝑊𝑝𝑠 using
pipelined prefix sum logic (Step a ). Then, in Step b , it calculates {𝑤 𝑖

sum +𝑊ps [ 𝑗]}𝑘𝑗=1 using four
adders in parallel, and the last prefix sum (e.g., eight in the figure) is added to𝑤sum to calculate the
next 𝑘 items. The Selector performs the sampling procedure of 𝑘 items per cycle. To avoid costly
division operations in calculating 𝑝 , we rewrite the comparison between 𝑝 and the random number
in the interval of [0, 1], 𝑟 , as follows: First, let 𝑟∗ be a 32-bit integer random number generated from
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ThundeRiNG. The condition for sampling the 𝑗-th item is as follows,

𝑝 > 𝑟 ⇒ �̂�𝑘 [ 𝑗]
𝑤 𝑖
𝑠𝑢𝑚 +𝑊𝑝𝑠 [ 𝑗]

>
𝑟 ∗

232 − 1 . (6)

Then, by moving the denominators from both sides to the numerators on the other side, we obtain
the following inequality:

⇒ �̂�𝑘 [ 𝑗] (232 − 1) > 𝑟 ∗ (𝑤 𝑖
𝑠𝑢𝑚 +𝑊𝑝𝑠 [ 𝑗]) . (7)

We further reorganize the left term,

⇒ 232 · �̂�𝑘 [ 𝑗] > 𝑟 ∗ (𝑤 𝑖
𝑠𝑢𝑚 +𝑊𝑝𝑠 [ 𝑗]) + �̂�𝑘 [ 𝑗] . (8)

The comparison in Equation (8) can be further simplified as follows. Multiplication in the left term
can be obtained by light-weight bit shifting on FPGAs. As {𝑤 𝑖

sum +𝑊ps [ 𝑗]}𝑘𝑗=1 is the output of the
Weight Accumulator, the right term only needs one multiplication and one addition (Step c ), which
can be completed simultaneously by the DSP slice in FPGAs [46]. If the comparison condition is
true, which means the item is a candidate for output, we record the indices of these items (e.g., two
and three in this example). Finally, we determine the latest candidate by comparing their indices.
This is implemented using a tree-based comparator (Step d ), where each level compares two
adjacent items. Based on the index of the selected item, Output extracts the corresponding item
from the input item stream and updates reservoir. In the example, the third item, 𝑣5, is selected in
the reservoir. When the stream ends, reservoir is output as the sampled result.

5 MEMORY OPTIMIZATIONS
Memory accesses to DRAM are highly optimized in LighRW. First, LightRW employs a degree-
aware cache that stores only the high-degree vertices in on-chip memory. Second, since neighbors
of different vertices have varying lengths, we propose a dynamic burst access engine that adjusts
the burst access size to minimize redundant data access, thereby improving memory bandwidth
utilization.

5.1 Degree-aware Cache
Accesses to the addresses of neighbors of the current vertex, namely the accesses to the row_index
array in the Neighbor Info Loader component, are inherently random, as the current vertices from
different steps are selected randomly. Due to the large reuse distance [8], existing cache policies
(i.e., LRU and FIFO, etc.) that are designed to retain the most recent or frequently-used data items
in on-chip memory are ineffective in handling this access. In this paper, we provide an analysis
of how the degree of a vertex can indicate the reuse ratio of a vertex in GDRWs. Based on this
analysis, we propose a degree-aware cache to cache the high-degree vertices at runtime with zero
initialization overhead.

Buffering high-degree vertices into fast memory for graph processing has been adopted in many
recent research works [3, 6, 67]. These approaches are based on the observation that graph process-
ing applications frequently access the properties of vertices with a larger number of neighbors. For
instance, Zhao et al.[67] build a hash lookup table for high-degree vertices during graph partition-
ing, while Balaji and Lucia [6] sort the vertices by their degrees in the preprocessing phase and
then reindex all vertices during the graph data preprocessing. However, all of these existing works
introduce additional initialization overhead and are only applicable for graph processing. Instead,
we explore the degree-aware caching method for GDRWs.
Probability Analysis of Vertex Accesses:We begin by presenting the analysis that the degree
of a vertex has a positive correlation with the probability of the vertex being traversed in GDRWs,
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by extending the existing conclusion on static random walks. Let 𝑃𝑟 [𝑣] be the probability that 𝑣 is
traversed by multiple independent random walk queries on a static weighted graph and follows a
stationary distribution [51]. Then, 𝑃𝑟 [𝑣] can be represented as follows:

𝑃𝑟 [𝑣] =
∑

𝑢∈𝑁 (𝑣) 𝑤𝑣,𝑢∑
𝑖∈𝑉

∑
𝑗 ∈𝑁 (𝑖) 𝑤𝑖, 𝑗

. (9)

Next, we consider dynamic random walks, where the sampling weight from vertex 𝑢 to vertex 𝑣
at time 𝑡 is𝑤𝑡

𝑢,𝑣 . The stationary distribution of 𝑣 based on the sampling weights at time 𝑡 is then
given by

𝑃𝑟 [𝑣] =
∑

𝑢∈𝑁 (𝑣) 𝑤
𝑡
𝑣,𝑢∑

𝑖∈𝑉
∑

𝑗 ∈𝑁 (𝑖) 𝑤
𝑡
𝑖, 𝑗

. (10)

LetW be defined as
∑

𝑖∈𝑉
∑

𝑗 ∈𝑁 (𝑖) 𝑤
𝑡
𝑖, 𝑗 , and let 𝛼 be a scaling factor that scales the minimal non-zero

weight to one. Since graphs have a finite number of edges, 𝛼 exists and is constant for a given
graph. Similarly,W is also a constant value. Therefore, we have:

𝑃𝑟 [𝑣] =
∑

𝑢∈𝑁 (𝑣) 𝛼𝑤
𝑡
𝑣,𝑢

𝛼W . (11)

Meanwhile, there exists a scaling factor 𝛼 such that the numerator
∑

𝑢∈𝑁 (𝑣) 𝛼𝑤
𝑡
𝑣,𝑢 is larger than

𝑁 (𝑣) and holds for any 𝑡 . Since 1/𝛼W is a constant value, we can conclude that 𝑃𝑟 [𝑣] = Ω(𝑁 (𝑣)).
Hence, the degree of vertices can be an admissible heuristic that estimates the probability of the
corresponding vertex being traversed.
Degree-aware Cache Policy: The above analysis supports us in designing a cache replacement
policy that replaces low-degree vertices in fast memory with high-degree vertices for a high cache
hit ratio. Figure 5 shows an example of our cache replacement policy and the hardware architecture
of the proposed degree-aware cache. The input to our degree-aware cache is a vertex index, and the
corresponding output is a tuple that contains the starting address of the neighbors (adjacent edges)
and the degree of the vertex. When an input vertex 𝑣𝑎 is received in Step a , our degree-aware
cache looks up whether 𝑣𝑎 exists in the cache by comparing the tag of the cache line and the tag of
the input. If 𝑣𝑎 is already in the cache (cache hit), the corresponding cache line is read in Step b ,
and the output is directly sent to the Neighbor Loader module within one cycle (Step c ). If 𝑣𝑎
is not in the cache (cache miss), one memory access is issued to the off-chip DRAM in Step d .
When the data for 𝑣𝑎 is received from DRAM, the cache immediately outputs the returned data and
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Fig. 6. Memory bandwidth and the ratio of valid data of MetaPath on livejournal with varying burst lengths.

compares the degree of the vertex in the corresponding cache line with the degree of 𝑣𝑎 in Step e .
If the degree of 𝑣𝑎 is higher, the cache updates the cache line with the data for 𝑣𝑎 ; otherwise, it
retains the original data.

5.2 Dynamic Burst Engine
GDRWs need to load all neighbors of the current vertex to move one step forward. Since neighbors
of a vertex are stored in consecutive addresses, burst access that reads multiple data sequentially
with a single memory request has been an effective method to improve memory bandwidth
utilization [4, 12, 16]. The data size of each burst access, namely the burst size, is equal to the
data width of the memory interface, 𝑁bus, multiplied by the burst length, 𝑆 . For example, if the
data width of the memory interface is 512-bit, burst access with a burst length of four will request
2048-bit data per request. Figure 6 shows memory throughput benchmark results (blue line) with
different burst lengths on our FPGA platform (Section 6.1). The results indicate that the utilized
memory bandwidth increases significantly with increasing burst length until reaching the peak
bandwidth (17.57 GB/s).
Issues of fixed burst length: Burst access with a long burst length is not effective for power-law
graphs as vertices have varying numbers of neighbors. If the size of the neighbors is narrower than
the burst size, the remaining data returned from memory will be unused, resulting in poor effective
memory bandwidth utilization. We define the ratio of valid data as the percentage of data used in
the computation compared to the total number of data loaded by the memory engine. The red line
in Figure 6 shows the ratio of valid data of MetaPath on livejournal with an increasing burst length
configuration. It turns out that the ratio of valid data is the highest with a burst length of one
and decreases with larger burst lengths. The existing study, DynaBurst proposed by Asiatici and
Ienne[4], adopts variable-length bursts to the memory interface to improve the effective memory
bandwidth for irregular applications. The main idea is to cache and reorder numerous narrow
memory requests in a non-blocking cache and explore data reuse of burst accesses. However, it
requires a large amount of on-chip memory and logic resources for the cache and reordering
function, respectively. Moreover, the latency is non-deterministic and varies significantly, which is
not suitable for GDRWs.
Our Design: To utilize the high memory bandwidth of the long burst and maintain a high ratio of
valid data of the short burst simultaneously, we propose a dynamic burst engine that schedules
memory access requests with varying sizes to access pipelines with different burst length configu-
rations at runtime. Let 𝑆1 and 𝑆2 be the number of bytes that can be loaded by one burst access of
the long burst pipeline and short burst pipeline, respectively. With a total of 𝑐 bytes of neighbors to
be loaded, the number of long burst accesses is set to ⌊𝑐/𝑆1⌋, while the number of short bursts is
set to ⌈(𝑐 − ⌊𝑐/𝑆1⌋𝑆1)/𝑆2⌉. In this way, the majority of requested data is handled by the long burst
pipeline with high memory bandwidth utilization, and the remaining data that cannot form a long
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Fig. 8. Hardware architecture of dynamic burst engine.

burst is loaded by the short burst pipeline, achieving a high ratio of valid data. As the total bytes
loaded is equal to ⌊𝑐/𝑆1⌋𝑆1 + ⌈(𝑐 − ⌊𝑐/𝑆1⌋𝑆1)/𝑆2⌉𝑆2, which is equal to ⌈𝑐/𝑆2⌉𝑆2, the loaded unused
data is no larger than 𝑆2.

Due to the highly skewed distribution of node degrees in real graphs, it is very hard to build the
model of burst length configurations to graphs with different structures. Hence, we determine the
configurations of the burst length from practical evaluation (more details in Section 6.3.2). Figure 7
presents an example of our dynamic burst strategy given 𝑆1 = 16 and 𝑆2 = 1. Assuming the request
to neighbors with a size of 33, the request is scheduled into two (⌊33/16⌋) long burst accesses and
one ((33 − 2 × 16)/1) short burst access. The request to neighbors with a size of two consists of
zero (⌊2/16⌋) long burst and two ((2 − 0)/1) short burst accesses.
Figure 8 presents the hardware architecture of our dynamic burst engine, which contains four

hardware modules: Burst cmd Generator, Long Burst, Short Burst, and Intra Burst Merge. The Burst
cmd Generator module takes a data pair, address, degree, as input, where address is the starting
address of neighbors in col_index, and degree is the number of neighbors of the vertex. The Burst
cmd Generator follows the above scheduling method to generate burst access commands and
dispatches commands to the Long Burst and Short Burst modules. Long Burst and Short Burst are
connected to a memory crossbar and access the col_index array in FPGA’s DRAM independently.
Their burst length is configured to 𝑆1 and 𝑆2, respectively. The Intra Burst Merge module returns
data from two burst modules and outputs them to the Weight Updater.

6 EVALUATION
In this section, we present the evaluation of LightRW. In Section 6.1, we introduce the hardware
setup and the graph dataset used in our evaluation. In Section 6.2, we evaluate the throughput and
efficiency of the proposed weighted reservoir sampling module, PWRS sampler. We further demon-
strate the impact of parameters in the dynamic burst engine and degree-aware cache in Section 6.3.
Finally, we compare LightRW with the state-of-the-art CPU-based implementation in Section 6.5.

Intel Xeon 6246R CPU
(16 cores)

FPGA
driver

LightRW
controller

col_index row_index

CSR Graph

DDR4 Host Memory

Alveo U250 FPGA Board

LightRW

In
st

an
ce

 0

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

In
st

an
ce

 0

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

FPGA DRAM

C
h

n
0

C
h

n
1

C
h

n
2

C
h

n
3

C
h

n
0

C
h

n
1

C
h

n
2

C
h

n
3

P
C

Ie
 D

M
A

17 GB/s × 4 channel

 131 GB/s

16 GB/s

DDR4

PCIe

Intel Xeon 6246R CPU
(16 cores)

FPGA
driver

LightRW
controller

col_index row_index

CSR Graph

DDR4 Host Memory

Alveo U250 FPGA Board

LightRW

In
st

an
ce

 0

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 3

FPGA DRAM

C
h

n
0

C
h

n
1

C
h

n
2

C
h

n
3

P
C

Ie
 D

M
A

17 GB/s × 4 channel

 131 GB/s

16 GB/s

DDR4

PCIe

Fig. 9. Deployment of LightRW.
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6.1 Experimental Setup
6.1.1 Hardware Platform. LightRW is built on a machine where an Xilinx Alveo U250 accelerator
card is attached to the motherboard via the PCIe bus, as shown in Figure 9. The FPGA board has
2,000 BRAMs, 11,508 DSP slices, 1,341,000 LUTs, and four DRAM channels with a total capacity of
64 GB. We used the Vitis HLS Toolchain 2021.2 as the development environment.

6.1.2 Graph Datasets. Table 2 shows the graph datasets used in our evaluation. These real-world
graphs come from different categories, including the web, citations, and social networks. The RMAT
synthetic graphs are produced by the RMAT generator [10].

Table 2. The graph datasets.

Graphs |𝑉 | |𝐸 | |𝐷 | Type Categories
youtube (YT ) [35] 1.14M 2.99M 5 Undirected Web
us-patents (UP) [35] 3.78M 16.52M 9 Directed Citation
liveJournal (LJ) [35] 4.8M 68.9M 14 Undirected Social
orkut (OR) [47] 3.1M 117.2M 38 Undirected Social
uk2002 (UK) [9] 18.52M 298.11M 32 Directed Social
rmat-12∼22 (RMAT ) [34] 212∼222 215∼225 8 Directed Synthetic

6.1.3 Workloads. We implement and evaluate two representative GDRW algorithms: MetaPath [55]
and Node2Vec [25]. These algorithms are widely adopted as benchmarks in existing graph random
walk systems [19, 25, 42, 57].

6.1.4 Parameter Settings. We follow the experimental settings of previous works [54, 65]. The
number of queries is set to the number of vertices with non-zero degrees, and each query has a
unique starting vertex. All queries are shuffled following the approach in ThunderRW [54]. The
sampling method of ThunderRW is configured to use inverse transformation sampling following
the authors’ recommendation. The graph datasets are initialized with random edge weights and
vertex labels. The query length is set to five for MetaPath and 80 for Node2Vec, and we set 𝑝 = 2
and 𝑞 = 0.5 for Node2Vec. All experiments are repeated five times, and the median results are
presented.

6.1.5 Implementation Details. As shown in Figure 9, we implemented LightRW on a CPU-FPGA
platform, where a Xilinx Alveo U250 FPGA accelerator card is attached to the motherboard through
the PCIe bus. To run GDRW queries on a given graph, the LightRW controller on the host CPU side
issues DMA requests to transfer random walk queries and graph data in the compressed sparse row
(CSR) format to the DRAM of the FPGA platform and then invokes the accelerator. The LightRW
controller then enters a waiting state until the accelerator completes the computation.

Modern FPGAs generally use multiple DRAM channels to provide higher memory bandwidth [14,
31]. To utilize multiple DRAM channels, we instantiate multiple independent LightRW instances
and connect each of them to one DRAM channel, as shown in Figure 9. Each LightRW instance has
a private and independent copy of the graph data and is configured to fully utilize the bandwidth
of one channel. Meanwhile, we evenly distribute random walk queries to all instances.

6.2 Evaluation on WRS Sampler
The throughput of the WRS Sampler determines the overall performance of LightRW. Therefore,
we conduct an evaluation of the WRS Sampler module with different degrees of parallelism and
varying workloads individually. We randomly generate weights and items as the input data to be
sampled by the WRS Sampler. The pre-generated data is stored in the one FPGA’s DRAM. During
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the evaluation, the weights are sent to the WRS Sampler in a stream, and we measure the number
of traversed items per second as throughput.
Figure 10a shows the throughput of the proposed WRS Sampler with varying degrees of paral-

lelism, 𝑘 (the number of vertices consumed per cycle). The blue line shows the measured throughput,
while the gray dashed line shows the theoretical throughput. We observe that the throughput of the
WRS Sampler increases linearly with 𝑘 and matches the theoretical throughput when 𝑘 ≤ 16. At
𝑘 = 16, the sampling throughput reaches the maximum bandwidth of the FPGA DRAM (17 GB/s),
indicating that the proposed sampler can fully utilize the available memory bandwidth. Moreover,
the results demonstrate the good scalability of our proposed parallel weighted reservoir algorithm
and hardware architecture design.

Figure 10b shows the throughput of the WRS Sampler with varying workloads. Specifically, we
generate items of different sizes to be sampled in data streams ranging from 26 to 216. To ensure
the full bandwidth utilization of the FPGA’s DRAM by the WRS Sampler, we set the degree of
parallelism to 16. The results show that the throughput of the WRS Sampler is slightly less than
the maximum memory throughput when the workload size is small. This is due to the initialization
overhead of the pipeline execution, but such a performance difference is negligible. Overall, the
proposed WRS Sampler is capable of fully utilizing the memory bandwidth with varying workloads.
In other words, the WRS Sampler is not the bottleneck of the entire accelerator pipeline.

6.3 Impact of Memory Optimizations
In this section, we first evaluate the impact of different dynamic burst strategies in the dynamic
burst engine. We then demonstrate the benefits of our degree-aware cache in reducing the overhead
of random accesses in GDRWs.

6.3.1 Degree-aware Cache. Figure 11 depicts the cache miss ratio of the proposed degree-aware
cache (DAC) compared to the direct-mapped cache (DMC) for MetaPath on RMAT graphs with an
increasing number of vertices from 26 to 224. The evaluated caches are capable of storing up to 212
vertices.

We can make the following observations. First, for graphs with fewer than 212 vertices, the cache
miss ratio is close to zero, as all vertices can be cached. Second, our degree-aware cache has a much
lower cache miss ratio than a direct-mapped cache. Specifically, as the size of the graph increases,
the cache miss ratio of the direct-mapped cache grows significantly, while our cache still maintains
a comparatively lower miss ratio. For example, when the graph has 218 vertices, the cache miss
ratio of the direct-mapped cache is close to 100%, while our degree-aware cache only has a 49%
cache miss.
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6.3.2 Dynamic Burst Engine. Figure 12 shows the throughput comparison on MetaPath with
different dynamic burst strategies. The burst strategies are represented as ‘b{x} + b{y}’. For example,
given a strategy b1 + b16, it indicates that the length of a short burst and a long burst is set to 1
and 16, respectively. The baseline is b1 + b0, i.e., the burst length of the access pipeline is only
configured to one, which is the common setting to handle irregular workloads [4]. We set the length
of the short burst to one since it achieves minimal overhead in loading unused data, as we have
discussed in Section 5.2. Based on the results in Figure 12, we have the following highlights. First,
performance varies significantly with different strategies. The burst strategy b1 + b32 achieves the
best performance and outperforms the baseline up to 4.24×. Second, the strategy b1 + b2 delivers
the worst performance, because the benefits of long burst with length of two cannot amortize the
overhead of the burst plan generation. Third, although similar trends are observed on both synthetic
and real-world graphs, the performance improvements from dynamic burst strategies on real-world
graphs are not as significant. This is because real-world graphs are generally more irregular than
synthetic graphs. Nonetheless, our dynamic burst strategies can still provide up to 3.26× throughput
improvement compared to the baseline solution. As the strategy b1 + b32 outperforms others in all
graphs, we use it as the dynamic burst strategy for the subsequent evaluation.

6.4 Performance Breakdown
Figure 13 analyzes the performance breakdown of the three proposed techniques, weighted reservoir
sampling (WRS), dynamic burst engine (DYB), and degree-aware cache (DAC). Specifically, each
proposed technique is disabled one at a time, and the resulting impact on performance is measured
relative to the implementation with all techniques enabled. On the basis of the results, we have
the following observations. First, WRS, which enables pipelined execution, contributes the most
performance improvement (up to 41% to 79%) for the two GDRW algorithms, particularly for
Node2Vec. Second, the benefit from the dynamic burst engine on Node2Vec is comparatively small.
This is because Node2Vec requires additional memory access on the neighbors of the last traversed
vertex, which in turn decreases the available memory bandwidth for the dynamic burst engine.
Third, the degree-aware cache contributes more improvement to MetaPath than to Node2Vec. This
is because that the degree-aware cache aims to improve the performance on accessing the col_index
array, but Node2Vec has more memory accesses on the row_index array. Even though our cache
only occupies several URAMs, it still achieves up to 6% improvement on the largest graph uk2002,
demonstrating the effectiveness of the proposed cache replacement policy.
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Fig. 14. Performance comparison between LightRW and ThunderRW on MetaPath and Node2Vec.

(a) MetaPath. (b) Node2Vec.
Fig. 15. Comparison of latency between LightRW and ThunderRW on MetaPath and Node2Vec.

6.5 Comparison with the State-of-the-art CPU Implementation
We compare LightRW with the state-of-the-art CPU-based implementation, ThunderRW [54].
ThunderRW is executed on a server equipped with an Intel Xeon Gold 6246R CPU, which has 16
physical cores and a 19-stage pipeline, with a total cache capacity of 35.75MB [2].
First, we present the speedup of MetaPath and Node2Vec on five real-world graphs. Next,

we compare the latency of executing small number of queries. Finally, we conduct a sensitivity
evaluation by varying the query length and number of queries.

6.5.1 Throughput comparison. Figure 14 presents the speedup in performance of LightRW over
ThunderRW for both MetaPath and Node2Vec. Besides the explicit memory prefetching, task
level parallelism, and parallelized PRNG [50] that have already been enabled in ThunderRW, we
further implement and integrate the proposed parallel weighted reservoir sampling algorithm into
ThunderRW (ThunderRW w/PRWS) to make a fair comparison with LightRW.

The impact of parallel WRS algorithm on ThunderRW varies on different graphs. For example,
1.84× speedup is observed on OR dataset on MetaPath random walk, while significant performance
degradation is also observed on the UP and UK datasets. There are two potential reasons. First, the
maximum number of CPU pipeline stages is limited to 19, which is not suitable for the proposed
parallel WRS algorithm that relies on long pipeline execution. Second, the computational cost
of random number generation is not sufficiently amortized over the benefit of reduced memory
accesses. LightRW outperforms ThunderRW, even running at a 10× slower frequency and 2×
lower sequential memory bandwidth. In particular, LightRW delivers 6.27×∼9.55× speedup over
ThunderRW onMetaPath and 5.17×∼9.10× speedup on Node2Vec. This is attributed to the proposed
fine-grained pipelining with WRS and memory optimizations. It is worth noting that the speedup
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Fig. 16. Comparison of throughput between ThunderRW and LightRW on LJ with varying numbers of queries
on MetaPath and Node2Vec.
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Fig. 17. Comparison of throughput between ThunderRW and LightRW on LJ with varying query lengths on
MetaPath and Node2Vec.

on the youtube graph is smaller than others because it is small enough to fit into the CPU last-level
cache.

6.5.2 Latency evaluation. Figure 15 shows the execution latency of LightRW and ThunderRW.
Latency is calculated as the time from the start to the end of a query. For LightRW, we implement a
cycle counter inside the accelerator to measure the exact hardware cycles. We measure the latency
of 8192 randomly selected queries for each graph using both systems. In Figure 15, the rectangular
box of each data series indicates the range from the lower quartile (25th percentile) to the upper
quartile (75th percentile), and the horizontal line inside the box represents the median measurement.
The whiskers with the horizontal lines at the top and bottom represent the maximum and minimum
measurements, respectively.
On the whole, LightRW achieves much lower latency than ThunderRW. This suggests that

FPGA-based GDRW is more suitable for handling real-time graph analytic applications [21, 32, 38].
Additionally, the latency of LightRW is more consistent across different graphs compared to
ThunderRW. This is because the FPGA-based design has deterministic latency, CPU-based designs
often suffer from uncontrolled latency and non-deterministic resource sharing, such as hardware
interrupt preemption, user/kernel space context switching, and synchronization between multiple
threads, etc.

6.5.3 Sensitivity evaluation on query parameters. To further investigate the performance of LightRW
and ThunderRW, we conduct a sensitivity analysis on a representative dataset, the liveJournal (LJ)
graph. This graph has a moderate number of edges and its average degree is the median of all
evaluated real-world graphs. Specifically, we vary the number and length of queries in our analysis.
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Table 3. The comparison of power efficiency between LightRW and ThunderRW on all tested graphs.

App. Power consumption (Watt) Power efficiency
LightRW ThunderRW improvement

MetaPath 41∼45 103∼124 15.05×∼26.42×
Node2Vec 39∼42 110∼126 16.28×∼24.10×

Figure 16 presents the throughput of LightRW and ThunderRW with the number of queries
ranging from 210 to 222 of random walk on the LJ graph. We start the number of queries from 210
because ThunderRW requires at least 210 queries to fully utilize the memory bandwidth of the
target CPU. First, we can see that LightRW delivers almost constant throughput regardless of the
number of queries. The throughput is up to 4.8×107 steps per second on MetaPath and 3.5×107
steps per second on Node2Vec. Next, we observe that LightRW’s speedup over ThunderRW is
11.00×∼75.74× on MetaPath and 8.26×∼34.95× on Node2Vec. In particular, the speedup is more
significant when the number of queries is relatively small (e.g., up to 75.54× with 210 queries). This
is because ThunderRW has constant initialization overhead, such as memory allocation and thread
allocation, before the execution of multiple queries.

Figure 17 shows the throughput of LightRW and ThunderRW with varying query lengths from
10 to 80. The trends show that LightRW delivers constant throughput with different query lengths.
The performance speedup of LightRW over ThunderRW is around 9.97×∼10.20× for MetaPath, and
8.28×∼9.31× for Node2Vec. Therefore, we conclude that LightRW stably outperforms ThunderRW
on MetaPath and Node2Vec with different query settings.

6.5.4 Comparison of power efficiency. Table 3 compares the power consumption of LightRW and
ThunderRW. The power consumption of CPU-based execution is measured using the CPU Energy
Meter [41] during the execution of each benchmark, while the power consumption of our LightRW
FPGA accelerator is measured using xbutil [63].

The power efficiency improvement is calculated as the ratio of end-to-end execution time perWatt
of LightRW to that of ThunderRW. Overall, LightRW consumes less energy than ThunderRW and
outperforms ThunderRW by 15×∼26× on MetaPath and 16×∼24× on Node2Vec in power efficiency.
Since the power of LightRW on the FPGA platform is only 2.29× less than that of ThunderRW
on CPUs, and LightRW runs to 9.55× fast ThunderRW, we conclude that the improvement in
power efficiency is mainly due to our design rather than a power-efficient hardware platform.
The significant performance and energy efficiency improvements also demonstrate the efficacy of
customizing accelerators for GDRWs.

6.6 Other Results
In this section, we analyze the PCIe overhead of FPGA acceleration and present the hardware
resource utilizations of LightRW for different GDRW algorithms

Table 4. The proportion of PCIe data transfer time over the end-to-end execution time of MetaPath and
Node2Vec.

App. youtube us-patents liveJournal orkut uk2002
MetaPath 16.5% 15.3% 20.5% 33.5% 23.3%
Node2vec 0.07% 1.10% 0.54% 0.56% 0.25%

6.6.1 PCIe Overhead Analysis. Table 4 shows the percentage of time taken for PCIe data transfer
over the end-to-end execution time. The results demonstrate that graph data transfer generally
occupies only a small portion of the total end-to-end execution time, ranging from 0.07% to 33.5%.
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This suggests that data transfer is not a bottleneck for the entire system, and justifies the offloading
of GDRWs to the FPGA accelerator.
Table 5. The consumption of hardware resources (percentage) and frequency (MHz) of MetaPath and
Node2Vec on Alveo U250 FPGA borad.

App. LUTs REGs BRAMs DSPs Frequency
MetaPath 33.52% 29.76% 17.24% 5.16% 300MHz
Node2Vec 20.84% 18.20% 36.12% 2.62% 300MHz

6.6.2 FPGA resource utilization. Table 5 presents the resource utilization and frequency of LightRW
for MetaPath and Node2Vec. The results show that LightRW utilizes only a small portion of the
resources available on the U250 FPGA, leaving ample resources for downstream processing logic,
such as graph learning applications. Additionally, LightRW runs at a frequency of up to 300MHz
benefiting from the modular design methodology used.

6.7 Case Study: Link Prediction
As a case study, we integrated our accelerator into the StanfordNetworkAnalysis Platform (SNAP) to
accelerate the link prediction application [62]. SNAP is a popular graph analysis platformwith a core
library written in C++, optimized for maximum performance and compact graph representation [36].
Link prediction is a widely used function in applications such as social networks, bioinformatics,
and e-commerce [62]. The goal is to predict the existence of a link between two entities in a given
network. A common approach is to use the Node2Vec random walk to generate different paths,
followed by an unsupervised learning method, such as Word2Vec [25], to process the random walk
paths and identify vertices with minimal cosine similarity to form the predicted edges.

Figure 18 presents the execution time breakdown of LightRW-accelerated SNAP (SNAPw/LightRW)
and CPU-based SNAP for link prediction on the liveJournal graph. The results show that the
Node2Vec random walk is the most time-consuming part of the link prediction application. With
the acceleration of the Node2Vec random walk by LightRW, the total execution time of the link
prediction is reduced to half the original execution time. Furthermore, although graph data and
results need to be copied between CPU and FPGA memory, the impact is negligible compared to the
overall execution time. The results also indicate the potential for further performance improvements
if the learning process can also be offloaded to the FPGA side for acceleration.

7 RELATEDWORKS
Graph Random Walks on CPU/GPUs. Knightking [65] adopts a vertex-centric model for a
single query and processes multiple queries with the BSP execution model, i.e., waiting for all
queries to complete the current step before starting the next step. To leverage the parallel processing
capability of GPUs, C-SAW [43] parallelizes the initialization and generation stage using the inverse
transformation sampling method among multiple GPU processing cores. Multiple queries are
processed using the BSP model. ThunderRW [54] proposes a step-centric model that interleaves
memory accesses of subtasks to improve the parallelism of multiple queries, achieving state-of-the-
art performance and outperforming the GPU-based C-SAW.
Graph Random Walks on FPGAs. Su et al. [53] propose an FPGA-based accelerator for static
random walks that utilizes high bandwidth memory (HBM) and multiple processing elements to
handle multiple queries concurrently. They develope a degree-aware sampler that selects the
appropriate division arithmetic units based on the degree of the vertices. This work is designed
to support a specific MetaPath query by partitioning the graph into subgraphs based on vertex
labels and performing a static random walk on each subgraph. However, their architecture is highly
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Fig. 18. Execution time breakdown for link prediction on LJ graph between SNAP and LightRW accelerated
SNAP (SNAP w/LightRW)

specific to MetaPath queries with only two types of vertex labels. Because it only supports uniform
random sampling, the proposed accelerator is limited to unweighted MetaPath random walks and
cannot be generalized to any other GDRW algorithms. On the other hand, LightRW is an accelerator
for dynamic random walks and supports not only generic MetaPath queries but also other GDRW
algorithms. Our performance improvements are mainly due to the novel FPGA architecture design
that efficiently realizes the proposed parallel weighted reservoir sampling algorithms.

8 CONCLUSION AND FUTUREWORK
This paper proposes LightRW, the first FPGA-based accelerator for GDRWs. Unlike existing CPU-
based approaches that require synchronization barriers among different stages, LightRW parallelizes
the weighted reservoir sampling for GDRWs to enable a fine-grained pipeline execution on the
chip, allowing for better spatial parallelism and reduced memory access to the DRAM. Additionally,
LightRW contains two novel memory optimizations to handle memory access patterns specific to
random walks with better efficiency. Experimental results demonstrate that LightRW achieves up to
9.55× and 9.10× performance speedup compared to the state-of-the-art CPU-based implementation
on two representative dynamic random walk algorithms. However, processing large graphs (e.g., in
Terabyte scale) may require multiple FPGA boards with sufficient computation power and DRAM.

Future work: First, we plan to develop a distributed version of LightRW to leverage the in-
creased availability of high-speed network interfaces (e.g., InfiniBand and 100G Ethernet) and
open-source network frameworks on FPGAs (e.g., OpenNIC [64] and Corundum [22]). Second,
LightRW demonstrates the advantage of a fine-grained pipelined accelerator over generic CPU
hardware. Specifically, our pipelined architecture eliminates the high cost of the random number
generation stage and the weighted random sampling initialization stage. This idea is not limited to
GDRWs but further enables the possibility of more efficient computing for both graph-based and
non-graph-based applications that rely on randomized approaches, such as Markov chain Monte
Carlo [7], Bayesian networks [18], and physics simulations [45].
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