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Abstract—The use of FPGAs for efficient graph processing
has attracted significant interest. Recent memory subsystem
upgrades including the introduction of HBM in FPGAs promise
to further alleviate memory bottlenecks. However, modern
multi-channel HBM requires much more processing pipelines
to fully utilize its bandwidth potential. Due to insufficient
resource efficiency, existing designs do not scale well, resulting
in underutilization of the HBM facilities even when all other
resources are fully consumed.

In this paper, we propose ReGraph1, which customizes het-
erogeneous pipelines for diverse workloads in graph processing,
achieving better resource efficiency, instantiating more pipelines
and improving performance. We first identify workload diversity
exists in processing graph partitions and classify them into
two types: dense partitions established with good locality and
sparse partitions with poor locality. Subsequently, we design
two types of pipelines: Little pipelines with burst memory access
technique to process dense partitions and Big pipelines tolerating
random memory access latency to handle sparse partitions.
Unlike existing monolithic pipeline designs, our heterogeneous
pipelines are tailored for more specific workload characteristics
and hence more lightweight, allowing the architecture to scale
up more effectively with limited resources. We also present a
graph-aware task scheduling method that schedules partitions
to the right pipeline types, generates the most efficient pipeline
combination and balances workloads. ReGraph surpasses state-
of-the-art FPGA accelerators by 1.6×–5.9× in performance
and 2.5×–12.3× in resource efficiency.

Keywords-Graph processing; FPGA; HBM; Heterogeneity

I. INTRODUCTION

Graphs are de facto data structures to represent the

relationships between entities in many application domains

such as social networks, genomics, and machine learning [13],

[24]. As a result, efficient graph processing is becoming

increasingly important, especially as the amount of graph

data grows [36]. Allowing efficient customization on the

hardware logic to computation/memory access patterns,

FPGA usually delivers better memory efficiency and energy

efficiency than CPUs/GPUs [1], [3], [4], [9], [29], [37],

1ReGraph is open-sourced at https://github.com/Xtra-Computing/ReGraph.

Table I: Estimation of resource utilization of existing designs

with increasing the number of memory channels (#CH).

Existing
designs

Resource
bottleneck

1 CH
(14 GB/s)

4 CH
(58 GB/s)

8 CH
(115 GB/s)

16 CH
(230 GB/s)

32 CH
(460 GB/s)

HitGraph [52] LUT *16.9% *68.1% 136.2% 272.4% 544.8%
FabGraph [37] LUT *25.5% 102.1% 204.2% 408.5% 817.0%
ISCA’21 [1] � LUT 18.6% *74.2% 148.4% 296.8% 593.6%
ThunderGP [4] CLB 21.3% *85.3% 170.6% 341.2% 682.4%

∗ Obtained from corresponding papers and normalized to U280.
� There is a potential overestimation as the proposed interconnection logic
for multiple DRAM channels may not be necessary on U280 as it has a
builtin hardcore crossbar.

[51], [52], [53]. Furthermore, high-level synthesis (HLS) that

translates kernels written in high-level languages to low-level

RTL modules alleviates the poor programmability issue of

FPGAs, providing high usability to efficient graph processing

systems [4], [14], [28].

While graph processing is data access intensive, recent high
bandwidth memory (HBM) enabled-FPGAs bring tremen-

dous performance potential. Graph processing explores the

irregular structure of a graph rather than performing large

numbers of computations, resulting in poor data locality and

high communication to computation ratio [25], [54]. Memory

bandwidth is therefore the major bottleneck to the system

performance. Recent FPGAs have started integrating HBM to

meet the demand for the ever-increasing memory bandwidth

of data center applications [6], [19]. For example, Alveo

U280 [47] equipped with 32 HBM channels can deliver

up to 460 GB/s of peak memory bandwidth, which is a

sixfold increase over the latest FPGA platform with four

DRAM channels (Alveo U250 [46]). The largely increased

bandwidth from more memory channels offers to saturate

much more graph processing pipelines [4], [52]; hence,

system performance can be largely improved.

However, it turns out that the system bottleneck shifts from

memory bandwidth to logic resources (e.g., LUT) on HBM-

enabled FPGAs. Table I presents the estimated resource

utilization of existing designs on U280 [47], the largest

HBM-enabled FPGA on the market. Hardware comparison is

inherently difficult, especially when the original designs are
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not available or compatible with a given platform. Fortunately,

since duplicating hardware modules is the common means of

scaling, we proportionally project the resource consumption

reported in the corresponding papers with the number of

memory channels and normalize it to U280. In this way, we

observe that all existing designs will exceed the resource

capacity available on the U280 even when only eight of the

32 memory channels are used. This under-utilization of the

HBM hints that performance can be scaled further if we

find a way to use the logic resources more efficiently. Since

logic resource becomes the new bottleneck, we shall target

resource efficiency – performance under a given amount of

resources (e.g., traversed edges per second (TEPS) / LUT) –

as the optimization criterion.
The key contribution of our work is in finding the

opportunity to improve resource efficiency by taking into

consideration the diversity of workloads in graph processing.

While graph partitioning is a widely employed technique

for improving memory access efficiency and extracting data-

level parallelism [1], [3], [4], [9], [29], [37], [51], [52], [53],

partitions are inevitably unbalanced due to the irregular graph

structure [21], [35], [41]. As a result, different partitions can

have quite different requirements. For example, in a pull-

based execution model, every vertex reads vertex properties

from its neighbors. A partition containing more vertices with

high in-degrees tends to have more memory accesses to the

vertex property array, hence a better data locality. Previous

research used monolithic pipelines that employ elaborate

techniques to provide high performance for a wide variety

of graph partitions [1], [4], [52]. However, this can lead

to over-provisioned pipeline designs and underutilization of

hardware resources. Partitions with poor locality require a

different memory access technique that is not necessary for

partitions with good locality. This motivates us to explore

heterogeneous pipeline designs for resource-efficient graph

processing on FPGAs.
While heterogeneity has been widely adopted in multi-

core architectures [20], [26], [42], realizing heterogeneous

pipelines on graph processing accelerators is nontrivial. First,

the irregularity of graph structure introduces significant

workload diversity within graph processing, which in turn

leads to a large design space of pipeline types. Second, the

pipeline microarchitectures must be efficiently tailored to the

irregular memory access patterns of graph processing while

staying resource-efficient. Third, the computational pattern

of graph processing is graph-dependent, which requires

task scheduling for heterogeneous pipelines to take into

consideration the graphs’ structures. To tackle the above-

mentioned challenges, we propose ReGraph, which provides

end-to-end support for graph processing on FPGAs with

heterogeneous pipelines.
In particular, we make the following contributions.

• We classify graph partitions to dense and sparse partitions

by grouping vertices based on their degrees; The dense

partitions have high-degree vertices, with good locality, and

the sparse partitions have low-degree vertices, with poor

locality. Then, on the basis of their workload characteristics,

we customize two types of pipelines: Little and Big

pipelines.
• We present a highly optimized configurable architectural

template which comprises the efficient micro-architectures

of Little and Big pipelines and their coordination logic.

It enables ReGraph to scale on different platforms with

various graph applications.
• We propose a graph-aware task scheduling method that

maps graph partitions to the right pipeline types, determines

the most efficient pipeline combination, and balances the

workloads of pipelines based on the proposed performance

model.
• The comprehensive evaluation shows ReGraph delivers

1.6×–5.9× performance speedup and 2.5×–12× resource

efficiency improvement over state-of-the-arts. ReGraph is

1.5×–9.7× faster than the state-of-the-art CPU solution

and 2.5×–9.2× more energy-efficient than GPUs.

II. MAXIMIZING RESOURCE-EFFICIENCY WITH

HETEROGENEOUS PIPELINES

In this section, we study the workload diversity in graph

processing and explore lightweight heterogeneous pipeline

designs in order to maximize performance per resource. In

particular, we characterize the diverse workloads of graph

partitions, classify the partitions into two different categories,

and specialize two types of pipelines according to workload

characteristics for higher resource efficiency.
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Figure 1: (a) The example graph; (b) The standard COO

graph representation; (c) Graph partitioning on the example

graph, assuming the size of vertex set is three.

A. Diverse Workloads in Graph Processing

Graphs can be processed in a vertex-centric or edge-centric

manner, with the latter being the more popular of the two [1],

[3], [4], [9], [37], [51], [52], [53]. In edge-centric processing,

edges are accessed sequentially with high memory efficiency.

To access vertices efficiently, the vertices of large graphs

are usually partitioned to fit into the limited on-chip RAMs

to avoid random memory accesses. Most state-of-the-art

designs [1], [4] opted to buffer destination vertices and

employ customized memory access techniques to access

source vertices from the global memory, as buffering both

results in a large amount of redundant data transfers. Figure 1

illustrates the graph partitioning method of ThunderGP [4].
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Figure 2: Workload characteristics of partitions with and without vertex grouping (DBG).

The input is a directed graph in the standard coordinate

list (COO) format with the row indices (source vertices) in

ascending order [4], [52]. Suppose a graph has V vertices

(V =6 in the example) and the size of the vertex set of a

partition is U (U=3 in the example), �V/U� partitions will

be generated with the vertex set of the ith partition ranging

from (i−1)×U to i×U . Partitions also maintain edge lists

that contain all edges whose destination vertices belong to

the vertex set. In this paper, we adopt this graph partitioning

method.
Graph partitions are naturally imbalanced because most

graphs are naturally irregular [2], [21], [41]. Power-law

graphs usually have a few high degree vertices (hot vertices)

that are involved in lots of connections [12], [25]. Therefore,

the distribution of these vertices influences the workloads of

partitions significantly. Figure 2 shows PageRank workload

characteristics of graph partitions from four representative

datasets (see Table III). For each partition, we profile

the percentage of processed edges in total edges and the

percentage of accessed source vertices in all vertices. Note

that the y-axis of the figure is on a logarithmic scale. The

grey markers in the figure suggest that graph partitions have

very different and diverse workload characteristics.

B. Workload Classification: Dense vs. Sparse
While partitions have many diverse workloads, we note that

they can be easily divided into two categories by grouping

high-degree vertices and low-degree vertices separately.

This can be achieved using the lightweight degree-based
grouping (DBG) [12] technique, which is widely used to

balance partitions and improve cache efficiency [1], [5], [12].

The colored markers in Figure 2 depict partition workload

characteristics after applying DBG. The vertices are reordered

in the descending order of in-degree. Partitions without any

edges are not included. We see that we can categorize them

into two major kinds of partitions:

• Dense partitions are partitions that have a large number

of edges and access a large portion of source vertices. The

first few partitions are dense as they contain most of the

high degree vertices of the graph. For example, the first

partition of the HD graph covers up to 72% of edges and

accesses 80% of source vertices.
• Sparse partitions are partitions that have a few edges

and only access a small portion of source vertices. The

remaining partitions are sparse as they only have low degree

vertices. For instance, the majority of partitions in the G23

graph have only fewer than 1% of edges and access less

than 10% of source vertices.
While the profiling statistics demonstrate the intuition of

our workload classification method, the exact classification of

whether a partition of a graph is dense or sparse is executed

in the task scheduling stage according to the performance

models of two types of pipeline (details in Section V).

C. Pipeline Customization: Big vs. Little

We aim at addressing the scalability issue of graph

processing on HBM-enabled FPGAs caused by poor resource

efficiency. The ability of easily classifying the diverse

workloads to two kinds motivates us to propose two types

of heterogeneous pipelines - one for dense and the other for

sparse partitions, to achieve higher resource efficiency.

• Big pipelines are designed to handle sparse partitions.

Firstly, due to the extremely poor data locality of sparse

partitions, memory access techniques such as caching,

prefetching [4] and the cache miss optimized memory

system [1] do not work well. Therefore, we allow Big

pipelines to tolerate the latency of inevitable memory

requests rather than spend a large amount of resource

on memory optimization techniques. Secondly, because

sparse partitions have a few edges but are of a large number,

partition switching overhead introduced by emptying the

pipeline and enqueuing tasks are non-negligible compared

to its short execution time [4]. This severely decreases the

speedup from multiple pipelines. To mitigate the overhead,

we adopt the data routing technique [3], [4] to enable Big

pipelines to process multiple partitions per execution.
• Little pipelines are designed to process dense partitions.

There is good spatial locality coming from a large amount

of source vertex accesses. However, Little pipelines will

read source vertices in a burst manner without trying to

save on redundant memory accesses as is done in existing

works [1], [4]. Instead, Little pipelines only do a light-

weight ping-pong buffering mechanism to overlap the

source vertex access and edge process. Since the number of

dense partitions is small, and they have a long execution

time, the overhead of partition switching is negligible.

Therefore, we do not perform any data routing with the

Little pipelines.
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As heterogeneous pipelines are customized for more

specific workload characteristics, they save the resources

for unnecessary functionalities while maintaining the same

or even higher performance. Their high resource efficiency

nature enables us to instantiate more pipeline instances within

the limited resource capacity to take advantage of the memory

bandwidth of HBM-enabled platforms. This allows ReGraph

to scale performance further.

III. REGRAPH OVERVIEW

Our preliminary study (Section II) identifies the oppor-

tunity of designing two kinds of pipelines to improve

resource efficiency and hence scale graph processing ef-

ficiently on HBM-enabled FPGAs. However, to deliver

end-to-end benefits from heterogeneity, there remain great

challenges in designing efficient pipeline microarchitectures,

configuring the numbers of pipelines of the accelerator

and scheduling graph data to heterogeneous pipelines. This

section introduces ReGraph, a framework providing full-stack

support for resource-efficient graph processing on FPGAs

with heterogeneous pipelines.

Accelerator 
Generation

User-defined 
functions 

(C++)

BMApply

… LPn BP1 BPm…

LM

Architectural
template

Input graph
Vertex Grouping & 
Graph Partitioning

Graph-aware 
Task Scheduling

Accelerators

Partition 
layoutPartitions

The selected 
accelerator

dense    sparse

LP      LP BP    BP

HBM banks

Programmable logic

LP1

Figure 3: ReGraph overview.

ReGraph adopts the popular Gather-Apply-Scatter (GAS)

model [1], [3], [4], [9], [29], [37], [51], [52], [53] to support

various graph algorithms. Figure 3 shows the overview of

ReGraph. Users only need to express their graph applications

by writing user-defined functions for three stages of the GAS

model: the Scatter, the Gather and the Apply. An example

of mapping PageRank is shown in Listing 1. ReGraph takes

these functions as inputs to generate a set of high-performance

accelerators with different pipeline combinations. Given an

input graph, ReGraph first groups vertices based on in-degree

and partitions the graph. It then selects the most efficient

accelerator for the graph and schedules the graph partitions.

Next, we shall illustrate the main building blocks of ReGraph.

Architectural template. The architectural template provides

a configurable graph accelerator architecture with heteroge-

neous pipelines for various graph applications that can be

expressed by the GAS model. The microarchitectures of the

two kinds of pipelines are highly optimized and meet the

design principles discussed in Section II-C. The numbers

of Big and Little pipelines as well as processing elements

(PE) inside a pipeline are configurable parameters to ease the

accelerator generation process. The architectural template is

a core component of ReGraph and fundamentally guarantees

the high performance the system can deliver. The detailed

design is presented in Section IV.

Accelerator generation. Given the user-defined functions

and the build-in architectural template, ReGraph explores

design space on the target FPGA and generates accelerators

with different pipeline combinations. Specifically, it first

configures the number of PEs inside each pipeline such that

one pipeline can fully utilize memory bandwidth from one

HBM channel. It then generates a set of synthesizable codes

by varying the numbers of Big and Little pipelines. The

Xilinx Vitis tool-chain [45] can be used to compile the codes

to deployable accelerator bitstreams.

Vertex grouping and graph partitioning. Same with

HitGraph [52] and ThunderGP [4], ReGraph takes the

graph with standard coordinate list (COO) format as input.

ReGraph firstly conducts a lightweight degree-based grouping
(DBG) [12] to cluster cold and hot vertices and then applies

a general destination vertex based graph partitioning as in

ThunderGP [4] to the graph. In this way, the partitions will

be either dense or sparse, as discussed in Section II-B.

Graph-aware task scheduling. Taking into the consideration

graph structure, the offline task scheduling schedules graph

partitions to the accelerator with the most efficient pipeline

combination to minimize the execution time. It first identifies

whether a partition is dense or sparse by estimating its

execution times on Big and Little pipelines using the proposed

performance models. Then, based on the total estimated

execution times of dense and sparse partitions, it selects

the most efficient pipeline combination and balances the

workloads of pipelines. While the offline task scheduling

is essential for fully utilizing the heterogeneous pipeline

architecture, design details are presented in Section V.

In terms of overhead, the accelerator generation is required

for every graph application, while the vertex grouping, graph

partitioning and task scheduling are executed once and offline

for a graph in the preprocessing phase.

IV. ARCHITECTURAL TEMPLATE

A. Overview

Figure 4 shows the overview of the proposed architectural

template. It is composed of a Little pipeline cluster with M
Little pipelines, a Big pipeline cluster with N Big pipelines,

the Little and Big mergers, the Apply and the Writer modules.

Little and Big pipelines connect to disjoint memory

channels and perform the Scatter and the Gather stages

for dense and sparse partitions, respectively. Both of them

manipulate Nspe Scatter PEs and Ngpe Gather PEs to process

multiple edges per cycle and consume the full bandwidth of

a memory channel. The input is a set of edges composed of
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source vertex ID, destination vertex ID and weights (optional).

The Scatter stage calculates update values for destination

vertices by processing the source vertex properties (retrieved

from the global memory by dereferencing source vertex ID).

The Gather stage accumulates update values for destination

vertices whose temporary properties are buffered in local

buffers and writes out the accumulated values after all edges

of the current task are processed. The Big and Little mergers

combine the intermediate results in buffers of the Big and

Little pipelines, respectively.

The Apply module receives accumulated temporary results

from the Big and Little pipeline clusters simultaneously.

Together with vertex properties from HBM channels, it

calculates new vertex properties with multiple PEs. The

new vertex properties are transferred to the Writer on a first-

come-first-serve basis. The Writer finally writes new vertex

properties to all memory channels for the next iteration. All

accesses to the global memory are in granularity of a block

(with 512-bit) for high memory efficiency.

Scatter 
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Scatter 
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Scatter 
PE Nspe

…

Gather 
PE 1
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PE 2

Gather 
PE Ngpe
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property
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Data                              router
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(a) Big pipeline architecture.
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Ping buffer
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Burst read u.

Update        tuples

(b) Little pipeline architecture.

Figure 5: Pipeline microarchitectures.

B. Big Pipeline Architecture

Figure 5a depicts the architecture of the Big pipeline,

which is composed of the Burst read module, the Vertex

Loader, the Data Router, Nspe Scatter PEs, and Ngpe Gather

PEs. The Burst read module sequentially reads multiple

edges and duplicates source vertices for the Vertex Loader.

The Vertex Loader retrieves source vertex properties for

Scatter PEs by tolerating memory access latency. The Data

Router dynamically dispatches update tuples generated by

Scatter PEs to Gather PEs that buffer the corresponding

destination vertices. This allows Gather PEs to process and

buffer distinct vertices; therefore, Ngpe Gather PEs can handle

Ngpe partitions per execution (while Little pipelines only

handle one), minimizing the number of partition switches.

We adopt a multi-stage butterfly network [3], [6] in the Data

Router. This saves 0.2% of total LUTs compared to the one

used in ThunderGP, while delivering the same throughput.
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Figure 6: The architecture of the Vertex Loader, assuming

the Big pipeline processes four edges per cycle.

Figure 6 shows the architecture and data flow of the

Vertex Loader, where we assume there are four Scatter PEs

processing four edges per cycle. The input is a set of source

vertex IDs (four in the example) extracted from a set of

edges. The output is a set of source vertex properties that

Scatter PEs are requesting. As the IDs are in ascending

order with the standard COO graph formats, we only cache

the last request of the previous vertex ID set (assumed

as one in Figure 6). The logic is split into two small

pipelines: the Request sending pipeline, which minimizes the

number of issued memory requests to global memory, and

the Response processing pipeline, which dispatches fetched

source vertex properties to Scatter PEs in parallel. This allows

execute/access decoupling as memory requests can be issued

before processing.

As shown in Figure 6, the data flow of the Vertex Loader

is as follows. In Step �, the Decoder module calculates block

indices in the global memory and the offsets of vertices in

the blocks in parallel. For example, if the vertex property is

32-bit in the memory, the indices equal to �src×32/512� and

offsets equal to (src×32 mod 512). In Step �, the Request

sending pipeline compares indices with the last requested

index (one in this example) and marks it as zero if matched,

otherwise outputs the index. In Step �, the memory Request

generator extracts valid memory requests (non-zeros). As

indices are monotonically increased, it ascertains the positions

of valid requests by counting the number of leading zeros. In
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the example, the index set has two zeros; thus, the Request

generator reads the requests from the offset of two to the end.

As a return, it saves two cycles compared to enumerating

all indices. In Step �, the Property reader fetches a vertex

property block (512-bit as well) for each block index from

the global memory, and writes it to the corresponding stream

in a blocking manner based on its offset in the current index

set. In the example, two property data blocks are written to

the third stream and the fourth stream, respectively, as their

offsets are three and four.

The Response processing pipeline responses source vertex

properties for Nspe Scatter PEs in one cycle. In Step �, it

compares the block indices with the last request in parallel

and reuses the last requested property block if they are

matched, otherwise reads from the stream. In the example, it

only reads the third and fourth streams as the first two indices

are matched. In Step �, the pipeline decodes out the vertex

properties based on their offsets in the corresponding property

blocks and sends them to Scatter PEs in parallel. Lastly, the

last request index and its property block are updated with the

last index of the current set and its properties, respectively.

C. Little Pipeline Architecture

Figure 5b shows the architecture of the Little pipeline,

which contains the Burst read module, the Ping-Pong Buffer,

the Merger, Nspe Scatter PEs, and Ngpe Gather PEs. The

Burst read unit sequentially reads edges. The Ping-Pong

Buffer accesses source vertex properties for Scatter PEs

in a burst manner without considering redundant accesses.

Without dynamic data routing, the update tuples generated

by Scatter PEs are statically dispatched to Gather PEs. As

different Gather PEs process update tuples with the same

destination vertices, they buffer the same destination vertices.

As a consequence, the Merger accumulates their intermediate

results once all edges of a partition are processed. Instead, Big

pipelines do not require mergers as PEs process distinctive

vertices. Next, we introduce the detailed design of the Ping-

pong buffer.

Ping-pong Buffer allows the Little pipeline to read vertex

properties from one buffer and meanwhile fetch vertex

properties from the global memory to the other buffer, hence

improving effective memory bandwidth. Figure 7 shows the

proposed Ping-Pong Buffer architecture. Same as the Vertex

Loader in Big pipelines, the inputs are the source vertex IDs,

and the outputs are the source vertex properties. We allocate

both ping and pong buffers for each Scatter PE for parallel

processing. To enable 512-bit data accesses to a buffer, we

cascade multiple BRAMs to construct a 512-bit memory

port, e.g., eight BRAMs with Xilinx devices (72 bit × 8),

as shown in the bottom right of Figure 7. The logic mainly

performs buffer filling to read vertex properties from global

memory and buffer reading to return the properties requested.

Two registers are used for synchronization: the buffer write

index and the buffer read index, and they are initialized as
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Figure 7: The architecture of the Ping-Pong Buffer, assuming

the Little pipeline processes four edges per cycle.

zeros. The read index is calculated by dividing the vertex

ID by the buffer size. The write index is determined by the

read index, since the buffers are filled before read. Switching

between ping or pong buffers to avoid conflicts is determined

by the last bits of the write and read indices.

Buffer filling is executed only when the write index is

behind the read index or not ahead by one (to avoid override

of the other buffer). The Burst reader is responsible for

writing successive data blocks to buffers and accessing the

global memory in a burst manner. In each cycle, it reads one

vertex property block to buffers. Once the buffers (e.g., ping

buffers) are full, it increases the buffer write index by one.

This will switch buffering filling to other buffers in the next

execution (e.g., pong buffers). On the other hand, the pipeline

reads vertex property blocks from buffers for Scatter PEs.

This happens only when the read index is behind the write

index, indicating that vertex properties are loaded into the

buffers. Multiple property blocks can be returned per cycle

with duplicated buffers. The Byte selector outputs the vertex

properties based on block offsets in corresponding vertex

property blocks. As vertex property access addresses are

monolithically increased, the architecture forces the buffer

write index to be not smaller than the buffer read index. This

avoids redundant memory accesses when the Little pipeline

processes only a portion of the partition.

V. GRAPH-AWARE TASK SCHEDULING

While the effectiveness of heterogeneous architectures

heavily depends on task scheduling, an accurate performance

model that estimates the execution time of partitions on

both types of pipelines is required for effective partition-to-

pipeline mapping (i.e., identifying whether a given partition

is dense or sparse) and workload balancing. In this section,

we first introduce the performance model of two types of

pipelines and then the model-guided task scheduling method.
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A. Performance Model

Unlike regular applications that have deterministic memory

access and computation latency [7], irregular graph structure

makes performance modeling challenging. A simple regres-

sion model based on the numbers of edge and vertex is unable

to model the processing performance accurately [4], because

the bottleneck of the pipeline alternates between edge access

and vertex access during execution. Instead, we propose a

cycle-level performance model that accurately estimates the

execution time of Big and Little pipelines of an application

on graph partitions by enumerating edges. As performance

estimation has only lightweight computation and is integrated

to the graph partitioning phase to reduce edge enumeration

overhead, it introduces little extra preprocessing overhead.

The estimated execution cycles Cp of two types of pipelines

on a partition p is shown in Equation (1):

Cp =
Ep

∑
i=0

max(Ci
acs v,Cacs e,Cproc)+Cstore +Cconst (1)

where i enumerates Ep edges of a partition (happening with

graph partitioning), Ci
acs v denotes cycles to access the source

vertex of the edge, Cacs e denotes cycles of reading the edge,

Cproc represents cycles to process the data, Cstore denotes

cycles to write out buffered destination vertices and Cconst is

the constant overhead.

As edges are sequentially accessed, given the data size the

memory channel can access in one cycle (i.e., the size of the

data block), Smem, and the size of an edge, Se, Cacs e can be

calculated as a constant value, Se
Smem

. For Cconst , we measure

the execution time of dummy partitions with a few edges to

estimate the constant overhead of partition switching.

Let Sram denote the data width of the port of the buffers

in Ngpe Gather PEs and let Sbu f denote the size of the buffer.

Cstore is calculated by Equation (2). The buffers of Gather

PEs in Little pipelines are merged; hence, the data size to

write out is Ngpe times smaller than that of the Big pipeline.

Cstore =

{
max(

Sbu f
Sram

,
Sram·Ngpe

Smem
), if Big pipeline

max(
Sbu f
Sram

, Sram
Smem

), if Little pipeline
(2)

Meanwhile, Cproc is determined by numbers of Scatter

PEs (Nspe), Gather PEs (Ngpe) and their IIs (IIspe and IIgpe),

as shown in Equation (3). The II indicates the number of

cycles the PE could process one input and is determined by

the compiler once the logic of PE is set.

1

Cproc
= max(

Nspe

IIspe
,

Ngpe

IIgpe
) (3)

Lastly, we model Ci
acs v based on the architecture of

the Vertex Loader and Ping-Pong Buffer in Big and Little

pipelines, respectively. As the Vertex Loader directly accesses

the memory for different requests without caching and

prefetching, we benchmark the memory access latency with

varying access distance (stride) on the test FPGAs [18]. The

benchmark results show that the Ci
acs v of the Big pipeline

can be modelled by a linear function with respect to access

distance, as shown in Equation (4), where a and b denote the

coefficients, Svprop denotes the size of the vertex property

and vid the source vertex ID of the edge. In addition, it

has an upper bound and a lower bound, as there exists the

worst-case and best-case memory access latency. For the

Little pipeline, the Ping-Pong Buffer sequentially reads the

vertices; hence, the Ci
src of the Little pipeline can be modelled

by the access distance and the data size the memory channel

can read per cycle, Smem, as shown in Equation (4).

Ci
acs v =

{
a · (vidi− vidi−1) ·Svprop +b, if Big pipeline
(vidi−vidi−1)·Svprop

Smem
, if Little pipeline

(4)

Combining Equations (1)–(4), we can estimate the execu-

tion cycles of Big and Little pipelines for a given partition.

B. Model-Guided Task Scheduling

Our task scheduling method includes inter- and intra-

cluster task schedulings which are based on the estimated

execution time of partitions (obtained by the performance

model during the graph partitioning phase) to fully utilize

the heterogeneous pipeline architecture for a graph. Firstly,

the inter-cluster task scheduling method schedules partitions

to the suitable type of pipelines and selects the most efficient

pipeline combination to minimize the worst execution time

of two clusters. Secondly, the intra-cluster task scheduling

method cuts partitions to sub-partitions with equal execution

times to utilize multiple pipelines within clusters. The task

scheduling process runs offline and only once to generate a

static scheduling plan for a graph on an application.
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Figure 8: Model-guided workload balancing. Assuming six

partitions, a total of five pipelines, and Ngpe = 4.

Inter-cluster task scheduling. Figure 8a shows two steps

of inter-cluster task scheduling. Firstly, given a graph with

a total of Np partitions, it ascertains the number of dense

partitions, X , and the number of sparse partitions, Y , to

minimize the overall execution time of partitions on Big and

Little pipeline clusters, ∑X
p=0 T p

Little +∑Y
p=0 T p

Big. In particular,

a partition is marked as a sparse partition if the estimated

execution time on the Big pipeline is shorter than that on
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the Little pipeline, otherwise marked as a dense partition. In

Figure 8, P1 and P2 are marked as dense partitions.

Secondly, it decides the numbers of two types of pipelines

to balance the execution time of the Big and Little pipeline

clusters. Assume the total number of pipelines is Npip (which

is bounded by the numbers of memory channels and memory

ports of the platform), it sets M+N = Npip and tunes M and

N to minimize the difference between execution times of

two clusters,
∣∣∑X

p=0 T p
Little

M − ∑Y
p=0 T p

Big
N

∣∣. Figure 8a illustrates the

example with a total of five pipelines. Three Little pipelines

are allocated to process two dense partitions, whereas two Big

pipelines are built for the execution of four sparse partitions.

Intra-cluster task scheduling. In our design, pipelines within

clusters process a partition cooperatively. This requires a

partition divided to sub-partitions for multiple pipelines.

While previous works [1], [4] cut the edges or vertices

of partitions evenly, the irregularity of partitions results in

unbalanced execution time of pipelines. Instead, we cut

partitions to sub-partitions with similar execution times

via the proposed performance model. Figure 8b shows the

example to cut four sparse partitions for two Big pipelines

and two dense partitions for three Little pipelines. As the

Big pipeline buffers Ngpe times as many vertices as the

Little pipeline, we merge every Ngpe sparse partitions into

large sparse partitions before the performance estimation.

To calculate the boundaries of sub-partitions by scanning

once, we estimate execution time at the granularity of a

window that contains a certain number of edges during graph

partitioning and then divide these windows into M or N
clusters that have similar overall execution times.

VI. IMPLEMENTATION

To implement ReGraph on Xilinx HBM-enabled devices

efficiently, we had to overcome several limitations of current

platforms using platform-specific optimizations. ReGraph

automates the accelerator generation and has user-friendly

programming interfaces to reduce the development efforts

involved from users. The prototype of ReGraph consists of

2,787 lines of HLS code for architectural templates, 2,063

lines of C++ code for graph preprocessing, scheduling and

accelerator deployment and 423 lines of Python code for

automated accelerator code generation.

A. Platform-Specific Optimizations

Memory port management. Current HBM-enabled FPGA

platforms support a limited number of HBM ports, e.g., U280

has only 32 HBM ports. This largely prevents ReGraph from

instantiating more pipelines on the platform. It should be

noted that existing works are not affected by this as they will

hit the resource constraint first. As a read port and a write

port in one kernel can be bundled [45], we propose HBM

port wrappers to bundle the write port in the Apply module

and the read port of reading vertex properties in Big and

Little pipelines. Wrappers receive memory requests, access

the global memory, and send the responses to corresponding

modules. This optimization reduces the number of HBM

ports per pipeline from three to two.

SLR crossing-aware optimizations. Modern FPGAs have

multiple super logic regions (SLRs) to enlarge resource

capacity; however, the costly inter-SLR communication may

result in low implementation frequency [14], [15]. ReGraph

has more pipelines, and HBM-enabled FPGAs have all

of the HBM channels in one SLR, making the timing

problem even worse. Beyond applying the existing timing

optimizations [1], [14], we implement the Big merger and

the Little merger using a merge tree with many small free-

running kernels [45] and merge the data within the SLR

as much as possible before sending them to other SLRs.

With these optimizations, ReGraph achieves a comparable

frequency to existing designs [1], [4], [37], [52].

Utilizing URAMs. Same as in previous work [1], [4], [37],

[52], we utilize URAMs for vertex buffering in Gather PEs,

using a 64-bit data access granularity. We also solve the read

after write hazard by utilizing a set of shift registers to obtain

an II of one for Gather PEs.

B. Automated Accelerator Generation

ReGraph automatically generates a set of accelerators with

the following steps. Firstly, it tunes the numbers of Scatter

and Gather PEs to fully utilize the memory bandwidth of

a memory channel. Secondly, ReGraph calculates the total

number of pipelines that can be instantiated on the platform,

Npip. While resources allow Npip to be the number of memory

channels, Nch, the number of memory ports, Nport , constrains

it, as each pipeline occupies two memory ports. Assume

the number of reserved memory ports for the Apply module

is Nres, ReGraph sets Npip as min(Nch,
Nport−Nres

2 ). Thirdly,

ReGraph enumerates the numbers of Big and Little pipelines,

by varying M from 0 to Npip and varying N from Npip
to 0 to generate Npip sets of configurations. Finally, with

these configurations, ReGraph spreads the kernels evenly to

SLRs according to a preset kernel-to-SLR mapping table and

connects kernels with AXI streams or memory channels. We

have developed a python-based program that automatically

generates synthesizable codes.

C. Programming Interface

Users can implement different graph accelerators by

only writing three high-level functions: accScatter,

accGather and accApply. This is similar to Thun-

derGP [4], but for completeness, we demonstrate users’

efforts using PageRank as an example in Listing 1. In lines

2–5, the accScatter returns the source vertex property,

which means the vertex pushes its property (an averaged

score) to its neighbours. In lines 5–6, the accGather
accumulates the property for destination vertices by adding

the buffered property and incoming values. In lines 8–9, the
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Listing 1 User-defined functions for PageRank.

1 /* logic for the Scatter PEs */
2 inline prop_t accScatter(prop_t srcProp, prop_t

edgeProp){↪→
3 return (srcProp); }
4 /* logic for the Gather PEs */
5 inline prop_t accGather(prop_t buf_prop, prop_t

value){↪→
6 return ((buf_prop) + (value)); }
7 /* logic for the Apply PEs */
8 inline prop_t accApply( prop_t tProp, prop_t

oProp, prop_t outDeg){↪→
9 return (((kDampFixPoint * tProp) >> 7) *

(1 << 16 ) / outDeg) >> 16;↪→
10 /*exit condition is omitted for simplicity */}

accApply calculates the new property of each vertex by

dividing weighted accumulated score by its out-degree.

VII. EVALUATION

We first assess the efficiency of Big and Little pipelines

and their performance models. We then evaluate the benefits

of heterogeneity and resource utilization, followed by the

demonstration of system scalability and the assessment of

the cost of preprocessing. Finally, we compare ReGraph to

state-of-the-art FPGA solutions and CPU/GPU solutions.

A. Experimental Setup

Hardware platform. Table II shows two HBM-enabled

FPGAs used in our evaluation. U50 is a low-profile card with

fewer resources and a lower thermal design power (TDP).

It supports only 28 memory ports, resulting in a lower peak

memory bandwidth. We host U280 and U50 on servers with

Xeon Gold 6246R CPU and Xeon W-2155 CPU, respectively.

Xilinx Vitis 2020.2 is used for development.

Table II: Two HBM-enabled platforms used in experiments.

Platform #LUTs #URAMs #SLRs Bandwidth #CH #Port TDP

Alveo U280 (U280) 1,304K 960 3 460 GB/s 32 32 225 W
Alveo U50 (U50) 872K 640 2 316 GB/s 32 28 70 W

Applications and datasets. We consider three representative

graph processing applications: PageRank (PR), Breadth-First

Search (BFS), and Closeness Centrality (CC). Table III

shows the details of the used graph datasets, including

synthetic [22] graphs and real-world large-scale graphs.

Parameter details. Each Ping-Pong Buffer is composed of

eight cascaded BRAMs to enable 512-bit access to the global

memory. The size of the Ping-Pong Buffer is 32KB. The

depths of streams that cross SLRs are set to 16 for better

Table III: The graph datasets.

Graphs |V | |E| |D| Type Categories

rmat-19-32 (R19) [22] 524.3K 16.8M 32 Directed Synthetic
rmat-21-32 (R21) [22] 2.1M 67.1M 32 Directed Synthetic
rmat-24-16 (R24) [22] 16.8M 268.4M 16 Directed Synthetic
graph500-scale23 (G23) [34] 4.6M 258.5M 56 Directed Synthetic
web-google (GG) [34] 916.4K 5.1M 6 Directed Web
amazon-2008 (AM) [34] 735.3K 5.2M 7 Directed Social
web-hudong (HD) [34] 2.0M 14.9M 7 Directed Web
web-baidu-baike (BB) [34] 2.1M 17.8M 8 Directed Web
wiki-topcats (TC) [23] 1.8M 28.5M 16 Directed Web
pokec-relationships (PK) [23] 1.6M 30.6M 19 Directed Social
soc-flickr-und (FU) [34] 1.7M 15.6M 9 Undirected Social
wikipedia-20070206 (WP) [10] 3.6M 45.0M 13 Directed Web
liveJournal (LJ) [23] 4.8M 68.9M 14 Undirected Social
ca-hollywood-2009 (HW) [34] 1.1M 56.3M 53 Undirected Collabo.
dbpedia-link (DB) [34] 18.3M 172.2M 9 Directed Social
orkut (OR) [34] 3.1M 117.2M 38 Undirected Social

timing. For all applications, the numbers of Scatter PEs and

Gather PEs (with II of one) of a pipeline are set to eight to

fully utilize the bandwidth of one memory channel. While

the resources of the two platforms allow us to instantiate one

pipeline per memory channel, the memory port limitation

constrains the number of pipelines to 14 on U280 and 12 on

U50. Each Gather PE buffers 65,536 destination vertices on

U280 and 32,768 on U50. All raw graph data are 32-bit in our

experiments. Same with ThunderGP [4] and GraphLily [17],

ReGraph uses fixed-point data types for PR.

Baselines. ThunderGP [4] and Asiatici et al. [1] are two

state-of-the-art graph processing frameworks using multiple

SLRs and memory channels on DRAM-FPGA platforms.

GraphLily [17] is a graph linear algebra overlay on HBM-

equipped FPGAs that expresses different graph algorithms

with two built-in primitives.

B. Efficiency of Big-Little Pipelines and Their Performance
Models

We first evaluate the performance of two types of pipelines

on different partitions together with the proposed performance

model. Figure 9 presents the measured and estimated execu-

tion time of PR of a single Big/Little pipeline on partitions

of four graphs (profiled in Figure 2). Note that the y-axis

of the figure is on a logarithmic scale. We report execution

time per eight partitions, as the Big pipeline processes eight

partitions per execution, benefiting from data routing.

As shown in Figure 9, the Little pipeline executes faster

than the Big pipeline when the partition is dense (the first

few partitions) while the Big pipeline performs better when

the partition is sparse (the rest of the partitions). This is

attributed to the architectures of Big and Little pipelines. At

Figure 9: Big and Little pipelines’ measured and estimated execution time of PR on partitions of four graphs on U280.
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Figure 10: Performance of PR with varying the numbers of Big (B) and Little (L) pipelines on U280.

Table IV: The performance of three applications with the most efficient pipeline combinations (Best) and the pipeline

combinations selected by the proposed task scheduling model (System) on U280.

APPs Config R19 R21 R24 G23 GG AM HD BB TC PK FU WP LJ HW DB OR Geo Mean Acc.

PR
Best 13169 15253 9915 13764 4946 4224 7662 7286 7920 8087 9530 7658 8853 15420 5457 12364 8834

91%
System 12525 13340 9815 13179 3782 3744 6939 6875 7790 7442 8948 7659 6414 13768 5230 11315 8037

BFS
Best 12661 13772 9554 12974 4595 4060 6877 6754 7495 7378 8861 7086 6336 14967 5229 12158 8167

92%
System 9951 13011 9421 12712 3397 4060 5854 6161 7089 7006 10350 7086 5934 13773 4263 11279 7545

CC
Best 12992 17279 10718 14273 5087 4583 7672 7375 8574 7993 9858 7816 7024 19028 5939 14588 9229

91%
System 12570 17227 10718 14273 4065 4152 6529 7375 7640 7680 7712 7816 6426 16926 5130 10602 8354

the same time, the estimated performance is very close to

the measured performance. The average error ratio (defined

as the difference between the estimated and the measured

execution time dividing the measured execution time) of

the Big pipeline’s model is only 4% and that of the Little

pipeline’s model is around 6%.

C. Impact of Task Scheduling

Figure 10 shows the performance of PR with different

pipeline combinations, where we vary the numbers of Little

and Big pipelines. The frequency of these implementations

is normalized to 210 MHz for a fair comparison. Traversed

edges per second (TEPS) is used as the performance metric.

The numbers of dense and sparse partitions are determined

by the framework. Implementations with only Big pipelines

(0L14B) or only Little pipelines (14L0B) are referred as

homogeneous pipeline architectures.

There are several insights. First, the most efficient imple-

mentations are heterogeneous (with mixed pipeline types)

as opposed to homogeneous, which indicates that graph

partitions have different preferences on types of pipelines.

Second, the most efficient pipeline combinations can deliver

up to 2× performance improvement over the least effective

ones. This suggests the importance of selecting the right

mix of pipelines. Third, synthetic graphs (R19, R21, R24

and G23) have better performance and require more Little

pipelines than real-world graphs, because they are relatively

regular and have a larger portion of edges located in dense

partitions.

Table IV shows the results of all three applications with the

most efficient pipeline combinations and the system-selected

ones by the proposed scheduling method on U280. On the

one hand, ReGraph demonstrates similar performance on all
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Figure 11: Resource utilization and frequency of PR imple-

mentations with all pipeline combinations on U280.

three applications, with a throughput of up to 15 GTEPS.

On the other hand, the performance with system-selected

pipeline combinations is from 91% to 92% of that with

the best configurations, showing the high efficiency of the

proposed task scheduling method in selecting the pipeline

combination.

D. Resource Utilization

Figure 11 presents resource utilization and frequency of PR

with different pipeline combinations on U280. We observe

similar resource utilization for other applications. We omit

the presentation of URAM utilization, as it decides the

partition size and is constant 96% for all implementations.

Overall, the most performant implementations such as 7L7B

only utilize around 30% of LUTs and less than 50% of

BRAMs. This indicates that the resource is no longer

the bottleneck in ReGraph, benefiting from heterogeneous

pipeline customization. In addition, with more Little pipelines

(hence fewer Big pipelines), LUT and register consumption

decrease, but BRAM consumption increases. This is because

Little pipelines cost more BRAMs with the Ping-Pong Buffer

module, whereas Big pipelines cost more LUTs and registers
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Table V: Preprocessing time with one CPU (Xeon Gold 6248R) thread in millisecond (ms).

Graphs R19 R21 R24 G23 GG AM HD BB TC PK FU WP LJ HW DB OR

Vertex Grouping (DBG) 3.4 14.2 111.2 29.9 9.6 7.3 12.6 18.8 13.9 14.9 10.8 28.9 34.3 7.3 131.0 30.9
Partitioning & Scheduling 168.9 719.6 4054.1 2943.3 66.1 57.0 171.1 229.4 357.1 318.9 436.5 508.9 996.3 1290.4 2842.9 2977.1
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Figure 12: ReGraph on PR with varying the total number of

pipelines on U280.

in the Vertex Loader and Data Router modules. Lastly, the

frequency is always above 210MHz, benefiting from our

crossing SLR optimizations and efficient resource utilization.

E. Scalability Exploration

Figure 12 shows the performance of PR with varying the

total number of pipelines. As one HBM channel only provides

256MB capacity, when the number of HBM channels is

small, some graphs are out of memory (marked as ‘OoM’).

The trends in Figure 12 indicate that ReGraph scales well

on synthetic graphs or real-world graphs with high average

degrees. However, super irregular and small graphs are unable

to gain linear speedup, which is also observed in previous

studies [1], [4]. This is because the constant overhead from

partition switching overwhelms the speedup of multiple

pipelines when partitions are super sparse.

F. Preprocessing Cost

Table V shows the preprocessing time of PR on the target

CPU with one thread. Graph partitioning and scheduling

is done in the same function to minimize the overhead to

access edges. Overall, the preprocessing overhead is small

and comparable to existing works [1], [4] as they have the

same complexity: O(E) for graph partitioning and O(V ) for

DBG, where E stands for the number of edges of a graph

and V indicates the number of vertices.

G. Comparison with State-of-the-arts

We compare ReGraph on U280 and U50 against Thun-

derGP [4], Asiatici et al. [1] and GraphLily [17].

Performance. Table VI shows the performance comparison

between ReGraph and three state-of-the-art works. For a more

compelling comparison, we ported the open-sourced code of

ThunderGP [48] to U280. The ported ThunderGP (U280) is

1.3× faster than the original design [4] on average, and its

frequency is around 240 MHz. Asiatici et al. [1] utilize four

DRAM channels (64 GB/s) and achieve frequencies ranging

from 196 MHz to 227 MHz. GraphLily [17] achieves 165

Table VI: ReGraph on the U280 and U50 compared to

state-of-the-art FPGA-based designs in terms of absolute

throughput and bandwidth efficiency (B.W.E).

Apps
SOTA Works Graph Throughput Speedup Thr. Speedup

(platform) datatsets (MTEPS) (B.W.E.) (U50) (U280)

PR

Asiatici et al. [1]
(UltraScale+)

DB 920 1.7× 4.2× 5.9×
R24 1,800 1.6× 4.1× 5.5×

GraphLily [17]
(U280)

R21 4,653 4.3× 2.8× 3.3×
HW 7,471 2.7× 2.0× 2.1×
PK 2,933 3.6× 2.3× 2.8×
OR 5,940 2.7× 1.7× 2.1×

ThunderGP [4]
(U280)

R21 5,920 1.2× 2.1× 2.6×
HW 6,147 1.1× 2.4× 2.5×
PK 3,832 1.0× 1.8× 2.1×
OR 5,661 1.0× 2.1× 2.2×
HD 1,760 2.0× 4.0× 4.4×

BFS

GraphLily [17]
(U280)

PK 1,965 4.8× 3.3× 3.7×
OR 4,937 3.2× 2.3× 2.5×
HW 6,863 2.8× 2.1× 2.2×

ThunderGP [4]
(U280)

R21 6,978 0.9× 1.9× 2.0×
HW 7,743 0.9× 1.9× 1.9×
PK 4,105 0.8× 1.6× 1.8×
OR 7,629 0.7× 1.5× 1.6×
HD 1,868 1.7× 3.3× 3.7×

CC
ThunderGP [4]

(U280)

R21 6,182 1.3× 2.1× 2.8×
HW 6,076 1.4× 2.5× 3.1×
PK 3,790 0.9× 1.7× 2.0×
OR 5,872 1.2× 2.0× 2.5×
HD 1,737 2.0× 3.7× 4.4×

MHz while using 285 GB/s of memory bandwidth on U280.

Bounded by the number of memory ports, ReGraph utilizes

15 HBM channels (216 GB/s) and operates at frequencies

of about 220 MHz. We fail to compare performance with

normalized frequency, since their publications do not provide

frequency per benchmark. Although ReGraph focuses on

improving resource efficiency as resource is the bottleneck

on HBM-enabled platforms, we also compare its bandwidth

efficiency (B.W.E.) – performance under normalized memory

bandwidth – with existing works.

Overall, ReGraph delivers significant performance speedup

to all state-of-the-arts with a similar implementation fre-

quency. Specifically, ReGraph outperforms Asiatici et al. [1]

by up to 5.5×–5.9×, GraphLily [17] by 2.1×–3.7× and

ThunderGP (U280) by 1.6×–4.4×. Even on U50, a budget

platform with only three-quarters of the peak memory

bandwidth of U280, ReGraph outperforms GraphLily [17]

by up to 3.3× and ThunderGP (U280) by up to 3.7×. In

terms of bandwidth efficiency, ReGraph is up to 1.7× higher

than Asiatici et al. [1] and comparable to ThunderGP, which

implies that heterogeneous pipelines save the resources for

unnecessary functionalities and still keep the same or even

higher performance. Meanwhile, the marginal performance

improvement per pipeline indicates that the majority of

performance speedup comes from the increased number of

pipelines, which is further attributed to resource savings

from heterogeneous pipeline customization. Compared to

GraphLily [17], the bandwidth efficiency speedup is even
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Figure 13: The proposed resource-centric roofline model and

resource efficiency comparison with recent designs.

higher than the throughput speedup. This is because its design

is unable to handle memory accesses efficiently, resulting in

undesired end-to-end throughput.

Resource efficiency. Figure 13 shows the proposed resource-

centric roofline model for performance bound analysis and

resource efficiency comparison with existing works. While

existing roofline models primarily focus on operational

intensity (e.g., FLOPS per memory access) [8], [11], [40],

[44], ours focuses on resource efficiency (MTEPS per K

LUTs). In our model, the x-axis shows the resource efficiency

and the y-axis shows the absolute throughput. Horizontal

lines represent the bandwidth bounds of different platforms,

while diagonal lines represent resource bounds. We draw the

rooflines for U50 and U280 according to their specifications.

As PR is used for experimental study in all existing works,

we use PR to calculate resource efficiency by normalizing

the best throughput reported in their papers to the utilized

LUTs.

There are several highlights from Figure 13. First, ReGraph

delivers much higher resource efficiency than existing works,

which means that ReGraph performs much better with limited

resources. Specifically, ReGraph outperforms Asiatici et

al. [1] by 12.3×, ThunderGP [4] by 5.7× and GraphLily [17]

by 2.5×. Second, U50 requires more resource efficient

designs to unleash its memory bandwidth potential than U280

as U50’s ridge point is on the right of U280’s. Third, while

existing works are essentially resource-bounded on U280

and U50 (as their points are on the left of the ridge points

of two platforms), ReGraph tackles the resource bottleneck

even on U50. Fourth, ReGraph is currently bounded by the

number of memory ports of the platform (shown as the

dashed gray ceiling). Theoretically, it can fully utilize all

available bandwidth of two platforms, as shown in shadow

marks. Last but not least, the proposed roofline model is

able to estimate ReGraph’s attainable performance on future

platforms by drawing the roofline of the platform.

H. Comparison with CPUs and GPUs

We compare ReGraph on U280 to Ligra [39] and Gun-

rock [43], which are the state-of-the-art opensource graph

Table VII: CPU, GPU and FPGA platform specifications.

Power is measured during the execution of benchmarks.

Platforms Bandwidth Measured power Process Release date

Alveo U280 (FPGA) 460 GB/s 28 ∼ 35 W 16-nm Q4 2018
Xeon(R) Gold 6248R (CPU) 122 GB/s 162 ∼ 208 W 14-nm Q1 2020
Tesla P100 (GPU) 732 GB/s 140 ∼ 176 W 16-nm Q2 2016
Tesla A100 (GPU) 2,039 GB/s 133 ∼ 187 W 7-nm Q2 2020
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Figure 15: ReGraph compared to Gunrock on two GPUs.

processing frameworks on CPU and GPU, respectively. Ta-

ble VII shows the configurations of the 48-core CPU platform

where we run the latest available Ligra framework [38] and

two different GPU platforms where we run the Gunrock

framework [31]. During the execution of each benchmark, we

measured actual CPU power using CPU Energy Meter [27],

GPU power using nvidia-smi [30] and FPGA power

using xbutil [45]. The energy efficiency improvement

means the ratio of GTEPS/Watt between ReGraph and

existing works.

Figure 14 shows the comparison between ReGraph and

Ligra on a latest server-level CPU. For PR, ReGraph delivers

1.6×–7.1× runtime speedup and up to 10×–38× improve-

ment in energy efficiency. For BFS, ReGraph outperforms

Ligra by 1.5×–9.7× in terms of performance and 9.5×–

58× improvement in energy efficiency. The significant

performance and energy efficiency improvements demonstrate

the efficacy of customizing accelerators for graph processing.

Figure 15 shows the comparison with Gunrock on Tesla

P100 and A100 GPUs. For PR, both GPUs perform better

than ReGraph in terms of throughput, benefiting from

much higher memory bandwidth. However, ReGraph delivers

2.4× (geomean) energy efficiency improvement over P100.

For BFS, ReGraph delivers better performance than P100

and significantly improved energy efficiency: 2.5×–9.2×
improvement (7× in geomean). Meanwhile, A100 delivers
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the best performance with its impressive memory bandwidth

and advanced manufacturing process. But, ReGraph still

demonstrates an up to 3.5× (geomean) energy efficiency

improvement over A100. In summary, ReGraph delivers

better energy efficiency than GPUs that have the same or

even more advanced manufacturing process.

VIII. RELATED WORK

In the early stage, ForeGraph [9] explores graph processing

with multiple FPGA boards. Later, FabGraph [37] enables

two-level vertex buffering technique to ForeGraph and

improves performance by 2×. Their technique in high-level

is overlapping vertex access and edge process, which is

similar to our ping-pong buffering design in the Little pipeline.

However, it introduces significant redundant memory accesses

when used for all graph partitions. Zhou et al. proposed a

series of FPGA-based graph processing works [50], [51], [52],

[53]. HitGraph [52] adopts the GAS model and executes

the scatter and the gather stages in a bulk synchronous
parallel (BSP) manner. Instead, ReGraph pipelines the Scatter,

Gather and Apply stages on-chip, hence reducing memory

accesses to the global memory. Oguntebi et al. presented

an open-source modular hardware library, GraphOps [32].

Chen et al. proposed an OpenCL-based graph processing

framework on FPGAs [3]. ThunderGP [4] fully utilizes the

memory bandwidth of the DRAM-FPGA platform. ReGraph

adopts the same programming interface with ThunderGP but

differs from ThunderGP in terms of pipeline design, system

architecture and task scheduling. Asiatici et al. [1] proposed

to use a cache miss optimized memory system for efficient

graph processing.

All of the above works explore a single kind of over-

provisioned pipeline design to handle different partitions in

graphs. Therefore, these solutions suffer from high resource

costs, which essentially prevents them from scaling on HBM

platforms. To the best of our knowledge, we are the first

to propose heterogeneous pipeline architectures to improve

resource efficiency of graph processing accelerators. Even

though GraphLily [17] has explored the graph processing

on HBM, they failed to customize accelerators as their

main technique is to reuse bitstreams of basic modules (e.g.,

SpMV/SpMSpV). ReGraph outperforms all the above works

significantly in both performance and resource efficiency.

There also exist ASIC-based graph accelerators that

demonstrate superior performance under the simulation

environment. For example, Graphicionado [16] achieves

4.5 GTEPS for PageRank via effective graph partitioning

and vertex buffering to on-chip memory. GraphDynS [49]

achieves more than 85 GTEPS with HBM (512GB/s) through

a hardware/software co-designed approach. Ozdal et al. [33]

presented an architecture template based on an asynchronous

execution model to exploit memory-level parallelism, which

delivers 3× speedup over CPU. However, these solutions

adopt homogeneous pipeline designs and do not consider

resource capacity constraints. Rather than having monolithic

pipelines, our heterogeneous pipeline designs are lightweight

and tailored to diverse workloads of graph processing,

delivering significantly improved resource efficiency.

IX. CONCLUSION AND DISCUSSION

HBM-enabled FPGAs have massive memory bandwidth.

However, the bottleneck in processing graphs has moved

to other resources, making it difficult to fully utilize the

bandwidth. In this paper, we propose the use of heterogeneous

pipeline architectures to alleviate this issue. We first identify

two kinds of major workloads within graph processing and

showed that the processing of dense vs sparse graph partitions

can be optimized in different ways. This gives rise to two

customized pipeline types, designed to be resource-efficient

for their specific workloads. We also propose an effective task

scheduling method that determines pipeline combinations and

schedules the graph partitions accordingly. Our framework,

ReGraph, further eases the entire development process,

delivering up to 1.6×–5.9× performance speedup and 2.5×–

12.3× resource efficiency improvement compared to the

state-of-the-art.

In our work, we found architectural features that will

improve graph processing on future HBM-enabled FPGAs.

Firstly, logic resources should be increased in general to

match the memory level parallelism provided by HBM so

that the system is more balanced. Secondly, current HBM

restricts graph sizes to smaller than 8 GB. As a future work,

we plan to introduce SSDs as storage while using HBM as

buffers to process billion-scale graphs. Thirdly, an increased

number of flexible memory ports are needed to improve

the utilization of the HBM. ReGraph’s performance can be

scaled even further once these features are available.
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APPENDIX

A. Abstract

ReGraph customizes heterogeneous pipelines for diverse

workloads in graph processing, achieving better resource

efficiency, instantiating more pipelines, and improving per-

formance, especially on HBM-enabled FPGAs that have

limited resources but massive memory bandwidth.

In this artifact, we demonstrate the workflow of ReGraph.

In particular, we shall show how to use the built-in graph

algorithms, compile the hardware bitstream and execute
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graphs on the target FPGA platform. In addition, we illustrate

how to reproduce the performance of implementations with

different pipeline combinations, as shown in Figure 10.

B. Artifact check-list (meta-information)
• Algorithm: PageRank (PR), Breadth-First Search (BFS), and

Closeness Centrality (CC).
• Data set: synthetic [22] graphs and real-world large-scale

graphs, as shown in Table III.
• Run-time environment: Xilinx XRT 2020.2
• Hardware: Xilinx Alveo U280 Data Center Accelerator Card
• Metrics: traversed edges per second (TEPS)
• Output: the execution time and the throughput of the

algorithm on a graph
• Experiments: 1) the execution of built-in graph applications

with a specific pipeline combination. 2) the performance
of graph processing algorithms with different pipeline
combinations.

• How much disk space required (approximately)?: at least
140 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 10 hours.

• How much time is needed to complete experiments (approxi-
mately)?: 20 hours.

• Publicly available?: yes.
• Workflow framework used?: makefile and python script.
• Archived (provide DOI)?: yes, please see https://zenodo.org/

record/6932812.

C. Description

1) How to access: We opensource and maintain ReGraph

on GitHub at https://github.com/Xtra-Computing/ReGraph.

Meanwhile, the archived source code is at https://zenodo.org/

record/6932812.

2) Hardware dependencies: A server with at least 50 GB

of main memory for FPGA bitstream compilation; An FPGA

board, i.e., the Alveo U280 Data Center Accelerator Card or

the Alveo U50 Data Center Accelerator Card.

3) Software dependencies: Ubuntu 18.04; gcc-9.4; Xilinx

Vitis 2020.2; Xilinx runtime (XRT) 2020.2.

4) Data sets: The datasets used in our evaluation are

shown in Table III, which contains both synthetic and real-

world large-scale graphs. We uploaded one small dataset

”amazon-2008” to GitHub repository for a fast evaluation.

D. Installation

1) Install Xilinx development env: The users must install

the Xilinx development environment before the execution.

We now use the U280 FPGA card as an example to illustrate

the process.

• Install Vitis 2020.2, following the official guidelines.

• Download and install the Xilinx runtime (XRT) with the

version: xrt 202020.2.8.743 18.04-amd64-xrt.deb.

• Download and install the deployment target plat-

form with the version: xilinx-u280-xdma-201920.3-

2789161 18.04.deb.

• Finally, install the target platform for building applications:

xilinx-u280-xdma-dev-201920.3-2789161 18.04.deb

2) Install ReGraph: Please directly fetch the latest code

from the GitHub repository of ReGraph.

1 git clone https://github.com/Xtra-Computing/ReGraph

E. Experiment workflow

1) Execution of built-in graph applications with a specific
pipeline combination: First, we need to enter the workspace

of ReGraph.

1 cd Yourfolder/ReGraph

Second, the user should assign the target FPGA hardware

platform and select any of the built-in graph algorithms (BFS,

PR or CC) by configuring the parameters in the Makefile
file. For example, we use the Alveo U280 Data Center

Accelerator Card and evaluate the PageRank algorithm.

1 vim Makefile
2 /* i.e., APP := pr
3 DEVICES := xilinx_u280_xdma_201920_3 */

Third, the user assigns a specific number of Big and Little

pipelines in the global_para.mk file. For example, we

set 11 Little pipelines and three Big pipelines.

1 vim global_para.mk
2 /* i.e., LITTLE_KERNEL_NUM=11 BIG_KERNEL_NUM=3 */

Fourth, with the following command, ReGraph could

automatically generate the synthesizable code, including

kernel files and connectivity files.

1 make autogen

Then, the below command compiles both the host execu-

tion program and the FPGA bitstream. It takes around 10

hours on our experimental server.

1 make all

Lastly, the users could directly pass the graph dataset to

the host execute, and the whole hard acceleration will be

executed in a push-button manner. Here, we use the graph,

amazon-2008, as an example. The execution time and the

throughput will be reported through the standard output

stream.

1 ./host_graph_fpga_pr xclbin_hw_pr/*.xclbin ./dataset/
amazon-2008.mtx 3

If the user requires other built-in graph algorithms, please

configure the APP parameter and repeat the whole process.

2) Execution of graph applications with different pipeline
combinations: First, the users still need to configure the

algorithm they need and the target hardware platform.

Second, the below script will enumerate all possible

pipeline combinations (except for the homogeneous pipeline

architecture) and compile bitstreams for the target platform.

Note that the requirement for disk space is huge. For example,

it consumes 140 GB for 13 pipeline combinations during

compilation.

1 ./batch_compile.sh
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Third, the following script could execute all graph datasets

on all pipeline combinations and record their results accord-

ingly. Please assign the datasets and the folder of results in

the script.

1 ./utils/tool_emu.sh

Lastly, we also offer a script to report frequencies of all

of the implementations with different pipeline combinations.

1 ./batch_report_timing.sh

F. Evaluation and expected results

In the first experiment, users can observe the printed

detailed information about pipeline execution, including

utilization of pipelines, number of edges processed by each

pipeline, number of partitions processed by two types of

pipelines, and the overall execution time and throughput

(MTEPS).

In the second experiment, there are 13 implementations

with different pipeline combinations generated automatically,

and the script reports the execution time of a graph on

all pipeline combinations and finds the best throughput of

each kind of pipeline combination. The results are shown in

Figure 10.

G. Experiment customization

With ReGraph, users can implement different graph

accelerators by only writing three high-level functions:

accScatter(), accGather() and accApply(). By

default, we provide three build-in graph algorithms, PageRank

(PR), Breadth-First Search (BFS), and Closeness Centrality

(CC) as examples. The desired application can be com-

piled by passing the argument APP=[bfs/pr/cc] to the

Makefile file.

The numbers of the Little pipeline and the Big

pipeline are configurable. You can change them in

./global para.mk by modifying LITTLE KERNEL NUM

and BIG KERNEL NUM. Please note, due to the limited

memory ports, for U280, the total number of pipelines, i.e.,

LITTLE KERNEL NUM + BIG KERNEL NUM should

not exceed 14, for U50, the total number of pipelines should

not exceed 13.

In addition, the user can specify which SLR to

put each kernel in, and which HBM banks you want

to let each kernel access, with three configurable

variables: apply kernel hbm id, all kernels slr id, and

all kernels hbm id, in the file ./autogen/autogen.py. Please

note, due to the U50 board having a smaller size of

URAMs, the LITTLE KERNEL DST BUFFER SIZE and

BIG KERNEL DST BUFFER SIZE should be reduced by

half, i.e., 32768 and 262144, respectively. After configura-

tions, run make autogen to generate the synthesizable

accelerators and the connectivity files.

Lastly, the user can modify the ./autogen/autogen.py to

configure the mapping between SLRs and HBM banks with

kernels. Kindly note HBM bank 30 of U280 and HBM bank

27 of U50 are reserved for the outdegree variable, so please

avoid using these two banks. For U280, we recommend you

use HBM bank 0 to 29, and for U50, we recommend you

use HBM bank 0 to 26. To have better timing and avoid

routing congestion, please assign the kernels evenly among

SLRs.
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