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ABSTRACT
FPGA has been an emerging computing infrastructure in datacen-
ters benefiting from features of fine-grained parallelism, energy
efficiency, and reconfigurability. Meanwhile, graph processing has
attracted tremendous interest in data analytics, and its performance
is in increasing demand with the rapid growth of data. Many works
have been proposed to tackle the challenges of designing efficient
FPGA-based accelerators for graph processing. However, the largely
overlooked programmability still requires hardware design exper-
tise and sizable development efforts from developers.

In order to close the gap, we propose ThunderGP, an open-source
HLS-based graph processing framework on FPGAs, with which de-
velopers could enjoy the performance of FPGA-accelerated graph
processing by writing only a few high-level functions with no
knowledge of the hardware. ThunderGP adopts the Gather-Apply-
Scatter (GAS) model as the abstraction of various graph algorithms
and realizes the model by a build-in highly-paralleled and memory-
efficient accelerator template. With high-level functions as inputs,
ThunderGP automatically explores the massive resources and mem-
ory bandwidth of multiple Super Logic Regions (SLRs) on FPGAs
to generate accelerator and then deploys the accelerator and sched-
ules tasks for the accelerator. We evaluate ThunderGP with seven
common graph applications. The results show that accelerators
on real hardware platforms deliver 2.9× speedup over the state-of-
the-art approach, running at 250MHz and achieving throughput
up to 6,400 MTEPS (Million Traversed Edges Per Second). We also
conduct a case study with ThunderGP, which delivers up to 419×
speedup over the CPU-based design and requires significantly re-
duced development efforts. This work is open-sourced on Github
at https://github.com/Xtra-Computing/ThunderGP.
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1 INTRODUCTION
Heterogeneous computing, where devices such as GPUs, FPGAs,
and ASICs work as accelerators, is a promising solution to sustain
the increasing performance demand of various applications [1–3].
With fine-grained parallelism, energy efficiency, and reconfigura-
bility, FPGA is becoming an attractive device for application ac-
celeration, and now can be found in computing infrastructure in
the cloud or datacenters such as Amazon F1 cloud [4], Nimbix [5],
and Alibaba cloud [6]. Examples of its successful deployment in-
clude Microsoft’s FPGA-accelerated Bing searching engine [7] and
Baidu’s FPGA-accelerated machine learning platform [8]. Neverthe-
less, programming with hardware description language (HDL) for
efficient accelerators is a well-known pain-point due to the sizable
development efforts and critical hardware expertise required [9].
High-level synthesis (HLS) partially alleviates the programming gap
by providing high-level abstractions of the hardware details. How-
ever, in practice, careful hand-crafted optimizations and a deep
understanding of the transformation from application to hardware
implementation are still required [9–14].

Graph processing is an important service in datacenters that has
attracted tremendous interests for data analytics because graphs
naturally represent the datasets of many important application
domains such as social networks, cybersecurity, and machine learn-
ing [15, 16]. The exponential growth of data from these applications
has created a pressing demand for performant graph processing.
This has attracted a large body of research in building efficient
FPGA-based accelerators for graph processing [17–31]. On the
whole, their insightful architectural designs, together with exten-
sive optimizations, deliver significant performance improvement
and energy saving compared to CPU-based solutions, demonstrat-
ing that the FPGA is a promising platform for graph processing.
Table 1: A survey of existing FPGA-accelerated graph pro-
cessing works. (F) claimed as a framework in corresponding
paper; (L) a library; (A) an accelerator architecture.

Works API1 PL2 Auto3 Eva4 App5 Public6

(F) GraphGen [29] ✘ HDL ✔ HW 2 ✘

(F) FPGP [20] ✘ HDL ✘ HW 1 ✘

(F) HitGraph [24] ✘ HDL ✔ SIM 4 ✔

(F) Foregraph [23] ✘ HDL ✘ SIM 3 ✘

(F) Zhou et al. [21] ✘ HDL ✔ SIM 2 ✘

(F) Chen et al. [32] ✘ HLS (OpenCL) ✘ HW 4 ✔

(L) GraphOps [27] ✘ HLS (MaxJ) ✘ HW 6 ✔

(A) FabGraph [26] ✘ HDL ✘ SIM 2 ✘

(A) Zhou et al. [22] ✘ HDL ✘ SIM 3 ✘

(A) AccuGraph [25] ✘ HDL ✘ SIM 3 ✘

(F) ThunderGP ✔ HLS (C++) ✔ HW 7 ✔

1 Whether the system provides explicit application programming interface;
2 Required programming language for development;
3 Whether the system supports automated design flow;
4 Evaluation based on simulation (SIM) or real hardware implementation (HW);
5 Number of evaluated applications with the system;
6 Whether the system is publicly available.
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Still, a large gap remains between graph applications and under-
lying FPGA platforms for graph application developers (mainly soft-
ware engineers). We survey existing graph processing frameworks
and generic accelerator designs particularly for FPGA platforms in
Table 1. There are several important observations. Firstly, none of
them provides explicit or easy-to-use APIs.Worse still, most of them
require programming with HDL, involving sizable design efforts.
Secondly, although several works adopt HLS, i.e., Graphops [27]
and Chen et al. [32], the lack of automation still requires manually
composing efficient pipeline and exploring design space. Lastly,
many of them only evaluate a few applications based on simulation
and are not publicly available. In summary, currently, embracing
FPGA-accelerated graph processing requires not only hardware
design expertise but also lots of development efforts.

In this paper, we propose ThunderGP, an HLS-based open-source
graph processing framework on FPGAs. In ThunderGP, the de-
velopers only need to write high-level functions that use explicit
high-level language (C++) based APIs that are hardware agnostic.
Subsequently, ThunderGP automatically generates a high perfor-
mance accelerator on state-of-the-art FPGA platforms with multiple
super-logic regions (SLRs) and even manages the accelerator’s de-
ployment. Specifically, our work makes the following contributions:
• We provide an open-source full-stack system – from explicit high-
level APIs for mapping graph algorithms to execution on the
CPU-FPGA platform, which dramatically saves the programming
efforts in FPGA-accelerated graph processing.

• We propose a well-optimized HLS-based accelerator template
together with a low-overhead graph partitioning method to guar-
antee superior performance for various graph processing algo-
rithms even with large-scale graphs as input.

• We develop an effective and automated accelerator generation
and graph partition scheduling method that deploys the suitable
number of kernels and conducts the workload balancing.

• We perform the evaluation on two FPGA platforms with seven
real-world graph processing applications and a case study to
demonstrate the efficiency and flexibility of ThunderGP. Imple-
mentations run at around 250MHz, achieve up to 6,400million tra-
versed edges per second (MTEPS), and deliver 2.9× performance
improvement compared to the state-of-the-art approach [24].
The rest of the paper is organized as follows. We introduce the

background and related work in Section 2 and then illustrate the
overview of ThunderGP in Section 3. The accelerator template
design and automated accelerator generation are presented in Sec-
tion 4 and Section 5, respectively, followed by graph partitioning
and scheduling in Section 6. We conduct a comprehensive evalua-
tion together with a case study in Section 7. Finally, we conclude
our work in Section 8.

2 BACKGROUND AND RELATEDWORK
2.1 HLS for FPGAs
Traditionally, HDLs like VHDL and Verilog are used as program-
ming languages for FPGAs. However, coding with HDLs is time-
consuming and tedious and requires an in-depth understanding of
underlying hardware to maximize the performance. In order to alle-
viate this programming gap and boost the adoption of FPGA-based
application acceleration, FPGA vendors and research communities

have been actively developing HLS tools, which translate a design
description in high-level languages (HLL) like C/C++ to synthesiz-
able implementations for the targeted hardware. For example, Intel
has released the OpenCL SDK for FPGAs [33] by which developers
could use OpenCL to program their FPGAs. Xilinx has developed the
SDAccel tool-chain [34], which supports C/C++/System/OpenCL
for programming FPGAs.

However, due to the difficulty in extracting enough parallelism
at the compiling time, efficient HLS implementations still require
hardware knowledge and significant development efforts; hence,
a number of works improve the efficiency of HLS implementa-
tions [9–14, 35–37]. Cong et al. [9] proposed a composable archi-
tecture template to reduce the design space of HLS designs. Li et
al. [12] presented aggressive pipeline architecture to enable HLS
to efficiently handle irregular applications. For performance tun-
ing, Wang et al. [11] proposed an analytical framework for tuning
the pragmas of HLS designs. In this work, we offer an HLS-based
accelerator template with functional C++ based APIs to ease the
generation of efficient accelerators for graph algorithms.

Algorithm 1 The GAS Model
1: while not done do
2: for all e in Edges do ⊲ The Scatter stage
3: u = new update
4: u.dst = e.dst
5: u.value = Scatter(e.w, e.src.value)
6: end for
7: for all u in Updates do ⊲ The Gather stage
8: u.dst.accum = Gather(u.dst.accum, u.value)
9: end for
10: for all v in Vertices do ⊲ The Apply stage
11: Apply(v.accum, v.value)
12: end for
13: end while

2.2 The GAS Model
The Gather-Apply-Scatter (GAS) model [38, 39] provides a high-
level abstraction for various graph processing algorithms and is
widely adopted for graph processing frameworks [21–24, 29]. Thun-
derGP’s accelerator template adopts a variant of push-based GAS
models [39] (shown in Algorithm 1), which processes edges by
propagating from the source vertex to the destination vertex.

The input is an unordered set of directed edges of the graph.
Undirected edges in a graph can be represented by a pair of di-
rected edges. Each iteration contains three stages: the scatter, the
gather, and the apply. In the scatter stage (line 2 to 6), for each
input edge with the format of ⟨𝑠𝑟𝑐, 𝑑𝑠𝑡,𝑤𝑒𝑖𝑔ℎ𝑡⟩, an update tuple is
generated for the destination vertex of the edge. The update tuple is
of the format of ⟨𝑑𝑠𝑡, 𝑣𝑎𝑙𝑢𝑒⟩, where dst is the destination vertex of
the edge and value is generated by processing the vertex properties
and edge weights. In the gather stage (line 7 to 9), all the update tu-
ples generated in the scatter stage are accumulated for destination
vertices. The apply stage (line 10 to 12) takes all the values accu-
mulated in the gather stage to compute the new vertex property.
The iterations will be ended when the termination criterion is met.
ThunderGP exposes corresponding functional APIs to customize
the logic of three stages to accomplish different algorithms.
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2.3 Related Work
There have been a number of research works on FPGA acceler-
ated graph processing. Table 1 has summarized the representative
studies that could process large-scale graphs.

In the early stage, Nurvitadhi et al. proposed the GraphGen [29],
which accepts a vertex-centric graph specification and then pro-
duces an accelerator for the FPGA platform. However, developers
need to provide pipelined RTL implementations of the update func-
tion. Dai et al. presented FPGP [20], which partitions large-scale
graphs to fit into on-chip RAMs to alleviate the random accesses
introduced during graph processing. More recently, they further
proposed ForeGraph [23], which exploits BRAM resources from
multiple FPGA boards. FabGraph [26] from Shao et al. delivers an
additional 2× speedup by enabling two-level caching to ForeGraph.
Nevertheless, the above two works adopt the interval-shard based
partitioning method which has a small partition size, resulting
in a significant data replication factor and heavy preprocessing
overhead. Moreover, two works are based on simulation and not
publicly available. Zhou et al. proposed a set of FPGA-based graph
processing works [19, 21, 22, 24]. Their latest work, HitGraph [24],
vertically partitions the large-scale graphs to enlarge the parti-
tion size. An unignorable shortcoming is that edges are sorted to
minimize the memory row conflicts, which is a heavy preprocess-
ing overhead. Furthermore, HitGraph executes the scatter and the
gather stages in a bulk synchronous parallel (BSP) execution model
where the intermediate data need to be stored and read from the
global memory. On contrast, ThunderGP adopts the pipelined exe-
cution for two stages hence reducing memory accesses to the global
memory. Yao et al. proposed AccuGraph [25], a graph processing
framework with an efficient parallel data conflict solver. Although
the vertical partitioning is adopted, edges are sorted during graph
partitioning. In terms of development, all above works require HDL
programming, as summarized in Table 1.

In the meanwhile, a few HLS-based graph processing frame-
works have been developed. Oguntebi et al. presented an open-
source modular hardware library, GraphOps [27], which abstracts
the low-level graph processing related hardware details for quickly
constructing energy-efficient accelerators. However, optimizations
such as on-chip data buffering are not exploited in their designs,
leading to poor memory performance. Chen et al. proposed an
OpenCL-based graph processing on FPGAs [32]. However, memory
accesses are under-optimized. Though two works embrace HLS,
significant development efforts on constructing the code and bal-
ancing the pipeline are still needed. As far as we know, all existing
works on the subject require hardware knowledge and specialized
tuning. In this work, we improve both the performance and the
programmability of FPGA-based graph processing.

3 THUNDERGP OVERVIEW
Generally, a complete design process of an FPGA-accelerated graph
application mainly contains two phases: 1) accelerator customiza-
tion for the graph algorithm; 2) accelerator deployment and exe-
cution (preprocessing graphs and scheduling graphs). ThunderGP
aims to ease the burden of both phases for developers by provid-
ing a holistic solution from high-level hardware-oblivious APIs to
execution on the hardware platform.
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Figure 1: The overview of ThunderGP.

3.1 ThunderGP Building Blocks
Figure 1 shows the overview of ThunderGP. We shall illustrate the
main building blocks of ThunderGP as follows.
Accelerator template. The build-in accelerator template provides
a general and efficient architecture with high parallelism and effi-
cient memory accesses for many graph algorithms expressed by the
GAS model. Together with the high-level APIs, it abstracts away
the hardware design details for developers and eases the generation
of efficient accelerators for graph processing.
Accelerator generation. The automated accelerator generation
produces synthesizable accelerators with unleashing the full po-
tentials of the underlying FPGA platform especially FPGAs with
multiple SLRs. In addition to the build-in accelerator template, it
takes the user-defined functions (UDFs) of the scatter, the gather,
and the apply stages of the graph algorithm (step ①) and the model
of the underlying FPGA platform (e.g., VCU1525) (step ②) from
developers as inputs. The synthesizable accelerator is generated by
effective heuristics which fit a suitable number of kernels to fully
utilize the memory bandwidth from multiple memory channels of
multi-SLR while avoiding the placement of kernels across SLRs.
After that, it invokes the development environment for compilation
(including synthesis and implementation) of the accelerator.
Graph partitioning and scheduling. ThunderGP adopts a verti-
cal partitioning method based on destination vertex without intro-
ducing heavy preprocessing operations such as edge-sorting [21,
22, 24, 25] to enable vertex buffering with on-chip RAMs. The de-
veloper passes the graph dataset to the API for graph partitioning
(step ③). The partition size is set automatically by the system re-
garding the generated accelerator architecture. Subsequently, the
partition scheduling method slices partitions into chunks, estimates
the execution time of each chunk of partitions by a polynomial
regression model based estimator and then searches an optimal
scheduling plan through a greedy algorithm.

Finally, through ThunderGP’s APIs, the accelerator image is
configured to the FPGA, partitions and partition scheduling plan
are sent to the global memory of the FPGA platform. The gener-
ated accelerator is invoked in a push-button manner on the CPU-
FPGA platform for performance improvement. Although the cur-
rent adopted development environment is Xilinx’s (SDAccel [40]
and Xilinx Runtime Library [41]), ThunderGP is compatible with
other FPGAdevelopment environments, e.g., Intel OpenCL SDK [33].
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Table 2: Acc-APIs (user defined functions).

APIs Parameters Return Description
𝑝𝑟𝑜𝑝_𝑡 scatterFunc ( ) vertex property, edge property. update value Calculates update value for destination vertices
𝑝𝑟𝑜𝑝_𝑡 gatherFunc ( ) update tuple, buffered destination vertices. accumulated value Gathers update values to buffered destination vertices
𝑝𝑟𝑜𝑝_𝑡 applyFunc ( ) vertex property∗, outdegree∗, etc∗. latest vertex property Updates vertex properties for next iteration

Table 3: Host-APIs (system provided).

APIs & Parameters Description
graphPartition (graph_t * graphFile) Partitions the large-scale graphs with the partition size determined automatically
schedulingPlan (string * graphName) Generates the fine-grained scheduling plan of different partitions according to number of kernels
graphPreProcess (graph_t * graphFile) Combines the graphPartition, the schedulingPlan, and the data transfer functions
acceleratorInit (string * accName) Initializes the device environment and configures the bitstream to the FPGA
acceleratorRunSuperStep (string * graphName) Processes all of the partitions for one iteration (super step)
acceleratorRead (string * accName)) Reads results back to the host and releases all the dynamic resources

3.2 ThunderGP APIs
ThunderGP provides two sets of C++ based APIs: accelerator APIs
(Acc-APIs) for customizing accelerators for graph algorithms and
Host-APIs for accelerator deployment and execution.
Acc-APIs. Acc-APIs are user-defined function (UDF) APIs for rep-
resenting graph algorithms with the GAS model without touching
accelerator details, as shown in Table 2. The type of vertex property
(𝑝𝑟𝑜𝑝_𝑡 ) should be defined at first. For the scatter stage and the
gather stage, developers write functions with the scatterFunc and
the gatherFunc, respectively. As the apply stage may require vari-
ous inputs, developers could define parameters through ThunderGP
pragmas (e.g., "#pragma ThunderGP DEF_ARRAY A" will add the
array A as function’s parameter) and then write the processing
logic of the applyFunc, an example shown in Listing 1 (Section 7.6).
Host-APIs. As shown in Table 3, developers could pass the graph
dataset to the graphPartition API for graph partitioning and gener-
ate the scheduling plan through the schedulingPlan API. In order
to simplify the invocation of the generated accelerator, ThunderGP
further encapsulates the device management functions in the Xilinx
Runtime Library [41] for accelerator initialization, data movement
between accelerator and host, and execution control.

4 ACCELERATOR TEMPLATE
The accelerator template is equipped with efficient dataflow and
many application-oriented optimizations, which essentially guaran-
tees the superior performance of various graph algorithms mapped
with ThunderGP. We shall elaborate the details in the next.

Global Memory  (partitions)

Memory Controller 

Scatter 
Scatter 
Scatter PEs 

Scatter 
Scatter 

Gather PEs 
Shuffle

Scatter Scatter Apply 

PEs RAMs

Figure 2: The overview of the accelerator template.

4.1 Architecture Overview
The overview of the accelerator template is shown in Figure 2,
where the arrows connectingmodules indicate theHLS streams [34].
The template exploits sufficient parallelism from the efficient pipeline
andmultiple processing elements (PEs). The Scatter PEs access source

vertices with application-oriented memory optimizations (details
in Section 4.3); meanwhile, the Gather PEs adopt large capacity
UltraRAMs (URAMs) for buffering destination vertices (details in
Section 4.4). The Apply PEs adopt memory coalescing and burst
read optimizations. Besides, the template embraces two timing op-
timizations for high frequency (details in Section 4.5).
Pipelined scatter and gather. The state-of-the-art design [24]
with vertical partitioning follows the BSP execution model to ben-
efit from on-chip data buffering for both source and destination
vertices. Instead, ThunderGP adopts pipelined execution for the
scatter stage and the gather stage with buffering only destination
vertices in on-chip RAMs, which eliminates the write and read of
the update tuple to the global memory. As a result, ThunderGP
accesses source vertices directly from the global memory. In order
to achieve high memory access efficiency, we carefully apply four
memory optimizations for the scatter stage (details in Section 4.3).
Multiple PEs with shuffle. ThunderGP adopts multiple PEs for
the scatter, the gather, and the apply stages to improve throughput.
Specifically, Gather PEs process distinctive ranges of the vertex set
to maximize the size of the partition. The 𝑖𝑡ℎ Gather PE buffers
and processes the destination vertex with the identifier (𝑣𝑖𝑑) of 𝑣𝑖𝑑
mod 𝑀 = 𝑖 , where𝑀 is the total number of PEs in the gather stage.
Compared to PEs buffering the same vertices [23, 26], ThunderGP
buffers more vertices on chip. In order to dispatch multiple update
tuples generated by the Scatter PEs to Gather PEs according to
their destination vertices in one clock cycle, ThunderGP adopts an
OpenCL-based shuffling logic [32, 42]. Though Gather PEs only
process the edges whose destination vertex is in the local buffer and
may introduce workload imbalance among PEs, the observed varia-
tion of the number of edges processed by Gather PEs is negligible,
less than 7% on real-world graphs and 2% on synthetic graphs.

In order to ease the accelerator generation for various FPGA
platforms, the numbers of PEs (Scatter PE, Gather PE, and Apply
PE), the buffer size in the gather stage, and the cache size in the
scatter stage (details in Section 4.3) are parameterized.

4.2 Data Flow
When processing a partition, the vertex set is firstly loaded into
buffers (on-chip RAMs) of Gather PEs with each owning an ex-
clusive data range. Then multiple edges in the edge list with the
format of ⟨𝑠𝑟𝑐, 𝑑𝑠𝑡,𝑤𝑒𝑖𝑔ℎ𝑡⟩ are streamed into the scatter stage in
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one cycle. For each edge, source vertex related properties will be
fetched from the global memory with 𝑠𝑟𝑐 as the index, together
with the weight of the edge (𝑤𝑒𝑖𝑔ℎ𝑡 ), to calculate the update value
(𝑣𝑎𝑙𝑢𝑒) for the destination vertex (𝑑𝑠𝑡 ) according to the scatterFunc.
The generated update tuples with the format of ⟨𝑣𝑎𝑙𝑢𝑒, 𝑑𝑠𝑡⟩ are
directly streamed into the shuffle stage, which dispatches them to
corresponding Gather PEs in parallel. The Gather PEs accumulate
the value (𝑣𝑎𝑙𝑢𝑒) for destination vertices which are buffered in local
buffers according to the gatherFunc. The buffered vertex set will be
written to the global memory once all the edges are processed. The
apply stage updates all the vertices (multiple vertices per cycle) for
the next iteration according to the applyFunc.

4.3 Memory Access Optimizations
ThunderGP chooses not to buffer source vertices into on-chip RAMs
not only because that enables pipelined scatter and gather, but
also because our memory optimizations could perfectly match the
access pattern of source vertices. Firstly, one source vertex may
be accessed many times since it may have many neighbours in
a partition; therefore, a caching mechanism can be exploited for
data locality. Secondly, multiple Scatter PEs request source vertices
simultaneously. The number of memory requests can be reduced by
coalescing the accesses to the same cache line. Thirdly, the source
vertices of edges are in ascending order; hence, the access address
of the source vertices is monotonically increasing. A prefetching
strategy [43] can be used to hide the long memory latency. Fourthly,
the irregular graph structure leads to fluctuated throughput. With
decoupling the execution and access [44], the memory requests
can be issued before the execution requires the data, which further
reduces the possibility of stalling the execution.

Figure 3 depicts the detailed architecture of the scatter stage,
consisting of the src duplicator, the memory request generator,
the burst read engine, the cache, and the processing logic from
developers. During processing, multiple edges are streamed into
the src duplicator module at each clock cycle. The source vertices of
the edges are duplicated for both the cache module and the memory
request generator module (step ①). The memory request generator
module outputs the necessary memory requests to the burst read
engine module (step②), which fetches the corresponding properties
of source vertices from the global memory into the cache module
(step ③ and step ④). The cache module returns the desired data to
the Scatter PEs according to the duplicated source vertices (step ⑤).
Next, we describe the details of four memory optimization methods.

Src duplicator
Memory request 

generator 

Burst read 

engine 

Cache
RAMs

① ②

Processing Logic

…

…

④

Memory Controller 
③

④④

⑤ ⑤

Processing Logic Processing Logic

RAMs RAMs

⑤

Figure 3: The scatter architecture, and the blue and orange
arrows show the execution pipeline and access pipeline, re-
spectively.

Coalescing. The memory request generator module coalesces the
accesses to source vertices from multiple Scatter PEs into the gran-
ularity of a cache line (with the size of 512-bit on our test FPGAs).
Since the request address is monotonically increasing, it simply
compares whether two consecutive cache lines are the same or not.
If they are the same, coalescing is performed; otherwise, the cache
line will be kept. Finally, the memory request generator sends the
memory requests for the cache lines which are not in the current
cache (cache miss) to the burst read engine module (step ②).
Prefetching. We adopt the Next-N-Line Prefetching strategy [43],
which prefetches successive𝑁 cache lines from the current accessed
cache line, and implement it in the burst read engine module by
reading the subsequent properties of source vertices from the global
memory in burst (step ③). The number of prefetched cache lines
(𝑁 ) equals to the burst length divided by the size of the cache line.
Access/execute decoupling. It is implemented by separating the
architecture to the pipeline to process edges (the execution pipeline,
shown with blue arrows in Figure 3) and the pipeline to access
source vertices (the access pipeline, shown with orange arrows in
Figure 3). The src duplicator module and the cache module are used
to synchronize two pipelines.
Caching. The cache module updates the on-chip RAMs (as a direct-
mapped cache with tags calculated according to the source vertex
index and the size of the cache) with the incoming cache lines
(step ④) and responds to requests from the execution pipeline by
polling the on-chip RAMs (step ⑤). The updating address is guar-
anteed to be ahead of the queried address to omit the conflicts. In
order to improve the parallelism of updating the cache, we partition
the on-chip RAMs to multiple chunks and slice the coming cache
lines into multiple parts for updating different chunks in parallel.
Similarly, the cache polling is executed in parallel by duplicating
the cache for each Scatter PE, as shown in Figure 3.

4.4 Utilizing UltraRAMs
ThunderGP takes advantage of the large capacity URAMs for buffer-
ing destination vertices in the Gather PEs through two optimiza-
tions. Firstly, the data width of URAM with ECC protected [45]
is 64-bit while the destination vertex is usually 32-bit. In order
to improve the utilization, we buffer two vertices in one URAM
entry with the mask operation for accessing the corresponding
vertex. Secondly, the write latency of URAM is two cycles, and the
calculation of Gather PE also introduces latency. Due to the true de-
pendency of the accumulation operation, HLS tool generates logic
with high initiation interval (II) [34] to avoid the read after write
hazard (RAW, a read occurs before the write is complete). In order
to reduce the II of Gather PEs, we deploy a set of registers for each
Gather PE to cache the latest updates to URAMs. A coming update
will compare with the latest updates and be accumulated with the
one matched in the register. The read, calculation (with fixed-point
data) and write can be finished in one cycle with registers. This
method guarantees enough distance for the updates to the same
vertex in URAMs hence eliminating RAW for URAMs.

4.5 Timing Optimizations
There are two design patterns prohibiting the implementations from
achieving high clock frequency. Firstly, the placements of multiple
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Figure 4: Streaming slicing (SS).
kernels may be far from each other with the constrained logic
resources, requiring long routing distance, as shown in Figure 4. In
addition, the kernels are connected with HLS streams implemented
by BRAM blocks for deep ones (more than the depth of 16) and
shift registers for shallow ones (less than the depth of 16) [46], and
BRAM blocks are interleaved with logic resources in FPGAs. As a
result, a deep stream may lead to critical paths, as shown in the red
lines in Figure 4. Secondly, data duplication operation which copies
one data to multiple replicas may significantly increase the fan-out
(the output of a single logic gate). Since HLS tools lack fine-grained
physical constraints for routing, we propose two intuitive timing
optimizations to improve the frequency.
Stream slicing. The stream slicing technique slices a deep stream
connected between two kernels to multiple streams with smaller
depths. For example, for a stream with a depth of 512, we recon-
struct it into three streams with the depth of 256, 2 (for using shift
registers), and 256, respectively. In this way, BRAMs from multiple
BRAM blocks and shift registers in interleaved logic blocks are used
as data passers, as indicated in the green lines of Figure 4. Therefore,
the long critical path is cut to multiple shorter paths.
Multi-level data duplication. To solve the second problem, we
propose a multi-level data duplication technique, which duplicates
data through multiple stages instead of only one stage. In this way,
the high fan-out is amortized by multiple stages of logic; hence a
better timing can be achieved.

5 ACCELERATOR GENERATION
Based on the accelerator template and inputs from developers,
ThunderGP automatically generates the synthesizable accelera-
tor to explore the full potentials of multi-SLR FPGA platforms. A
well-known issue of multi-SLR is the costly inter-SLR communi-
cation [47]. Furthermore, having multiple independent memory
channels physically located in different SLRs worsens the efficient
mapping of the kernels with high data transmission between the
SLRs [47–49]. Exploring the full potentials of the multi-SLR is gen-
erally a complicated problem with a huge solution space [49].

By following the principle of utilizing all the memory channels
of the platform and avoiding cross SLR kernel mapping, ThunderGP
adopts effective heuristics to compute the desired number of kernels
within the memory bandwidth of the platform and fit the kernels
into SLRs. Specifically, ThunderGP groups𝑀 Scatter PEs, a shuffle,
and 𝑁 Gather PEs as a kernel group, called a scatter-gather kernel
group since they are in one pipeline. On the other hand, it groups 𝑋
Apply PEs in another kernel group, referred as an apply kernel group.
For multi-SLR platforms with multiple memory channels, each
memory channel owns one scatter-gather kernel group that buffers
the same set of destination vertices and processes independently,
while memory channels have only one apply group as the apply
stage needs tomerge the results frommultiple scatter-gather groups
before executing the apply logic.

Design space exploration. Firstly, ThunderGP calculates the re-
quired numbers of PEs (𝑀 ,𝑁 and𝑋 ) of the scatter, gather, and apply
stages to satisfy the memory bandwidth of the platform. The 𝑀
and 𝑁 are calculated by Equation 1, where𝑚𝑒𝑚_𝑑𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ means
the data width of one memory channel (512-bit on our test FPGAs)
and the 𝑟𝑒𝑎𝑑_𝑠𝑖𝑧𝑒𝑠𝑐𝑎𝑡𝑡𝑒𝑟 stands for the total size of data read from
memory channel per cycle (depends on parameters of the func-
tion). The 𝐼 𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑃𝐸 and 𝐼 𝐼𝑔𝑎𝑡ℎ𝑒𝑟𝑃𝐸 are initiation intervals of the
Scatter PEs and the Gather PEs and are with the values of 1 and 2,
respectively, in our accelerator template. It then scales the number
of scatter-gather kernel groups to the number of memory channels
of the platform, 𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 . Similarly, the number of Apply PEs,
𝑋 , of the only apply kernel group is calculated by Equation 2.

𝑚𝑒𝑚_𝑑𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ
𝑟𝑒𝑎𝑑_𝑠𝑖𝑧𝑒𝑠𝑐𝑎𝑡𝑡𝑒𝑟

=
𝑀

𝐼𝐼𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑃𝐸
=

𝑁

𝐼𝐼𝑔𝑎𝑡ℎ𝑒𝑟𝑃𝐸
(1)

𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ×𝑚𝑒𝑚_𝑑𝑎𝑡𝑎𝑤𝑖𝑑𝑡ℎ
𝑟𝑒𝑎𝑑_𝑠𝑖𝑧𝑒𝑎𝑝𝑝𝑙𝑦

=
𝑋

𝐼𝐼𝑎𝑝𝑝𝑙𝑦𝑃𝐸
(2)

Secondly, fitting scatter-gather and apply kernel groups into
multi-SLR is modelled as a multiple knapsack problem [50] where
kernel groups are items with different weights (resource consump-
tion) and SLRs are knapsacks with their capacities (resources). The
buffer size in gather stage is the main factor of resource consump-
tion of the scatter-gather kernel group. The apply kernel group
usually occupies fewer resources. In order to achieve high utiliza-
tion of URAMs and reasonable frequency, ThunderGP initializes
the buffer size of the scatter-gather kernel group to an empirical
value, 80% of the maximal URAM capacity of an SLR (SLRs may
have different URAM capacities). If the fitting fails, it recursively
reduces to a half of the size to fit again. Then, the size of the cache
in scatter stage is set to leverage the rest of the URAMs. All the sizes
are with the number of power of two; hence, the utilized URAM
portion may not be precisely 80%. Since the number of kernel group
is small, we can solve the knapsack problem in a short time.
Automated generation. The acceleration generation process is
automated in ThunderGP, with the following steps. Firstly, with the
inputs from developers, ThunderGP tunes the width of data flow
streams, generates parameters of the apply function, and integrates
the scatter, the gather and the apply functions to the accelerator
template. Secondly, with the build-in hardware profiles for all the
supported FPGA platforms of the SDAccel [34], ThunderGP queries
the number of SLRs, size of available URAMs, number of memory
channels, and the mapping between SLRs and memory channels
according to the platform model provided by developers. Thirdly,
through the exploration with above heuristics, ThunderGP ascer-
tains the numbers of PEs, the number of scatter-gather kernel group,
the buffer size in the gather stage and the cache size in the scatter
stage for the platform. Fourthly, ThunderGP configures the param-
eters of the accelerator template and instantiates the scatter-gather
kernel groups and apply kernel group as independent kernels. Spe-
cially, ThunderGP integrates a predefined logic to the apply kernel
group for merging the results from scatter-gather kernel groups.
Finally, ThunderGP interfaces kernel groups to correspondingmem-
ory channels for generating the synthesizable code. Figure 5 shows
an example on VCU1525 (details in Section 7.1) with three SLRs,
where all four memory channels are utilized, and four scatter-gather
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Figure 5: The example implementation on VCU1525 with
three SLRs and four memory channels.
kernel groups and one apply kernel group fit into the platform prop-
erly. Besides, our fitting method prevents placing the scatter-gather
kernel groups into the SLR-2, which has fewer resources than other
SLRs due to the occupation of the static region.

6 GRAPH PARTITIONING AND SCHEDULING
Large graphs are partitioned during the preprocessing phase to
ensure the graph partitions fit into the limited on-chip RAMs of
FPGAs. Subsequently, the partitions are scheduled to coordinate
with the execution of the accelerator, especially withmultiple kernel
groups. We now introduce our partitioning method and scheduling
method, which are all encapsulated into the Host-APIs.

6.1 Graph Partitioning
Some previous studies [20–22, 24, 25] perform edge sorting or
reordering to ease the memory optimizations of the accelerator,
leading to heavy preprocessing overhead. Meanwhile, many oth-
ers [23, 26] adopt interval-shard based partitioning method, which
buffers both source vertices and destination vertices into on-chip
RAMs. However, the heavy data replication factor leads to massive
data transfer amount to the global memory.

ThunderGP adopts a low-overhead vertical partitioning method
based on destination vertices. The input is a graph in standard
coordinate (COO) format [24], where edges are sorted by source
vertices. The outputs are graph partitions with each owning a vertex
set and an edge list. Suppose the graph has 𝑉 vertices and the
scatter-gather kernel group of the generated accelerator can buffer
𝑈 vertices. The vertices will be divided into ⌈𝑉 /𝑈 ⌉ partitions with
the 𝑖𝑡ℎ partition having the vertex set with indices ranging from
(𝑖 − 1) ×𝑈 to 𝑖 ×𝑈 . The edges with the format of ⟨𝑠𝑟𝑐, 𝑑𝑠𝑡,𝑤𝑒𝑖𝑔ℎ𝑡⟩
will be scanned and dispatched into the edge list of the ⌈𝑑𝑠𝑡/𝑈 ⌉𝑡ℎ
partition. An example is shown in Figure 6, where the FPGA can
buffer three vertices, and the graph has six vertices. Note that source
vertices of edges are still in ascending order even after partitioning.
On the one hand, the proposed method does not introduce heavy
preprocessing operations such as edge sorting. On the other hand,
it reduces the number of partitions from ⌈𝑉 /𝑈 ⌉2 with the interval-
shard based partitioning method [23, 26] to ⌈𝑉 /𝑈 ⌉, which reduces
partition switching overhead when implementing with HLS.

6.2 Partition Scheduling
With multiple scatter-gather kernel groups, the partitions should
be appropriately scheduled to maximize the utilization of computa-
tional resources. We hence propose a low-overhead fine-grained
partition scheduler. Assumewe have𝑁𝑔 scatter-gather kernel groups
for the implementation on a multi-SLR FPGA. Instead of one par-
tition per kernel group, we schedule one partition to 𝑁𝑔 kernel

0 1 2

1

0

2

0

2

1

3 4 5

1

4

3

4

3

5

5

2

0
2 1

3 4
5

5

4

a) Example graph 

Partition 1 Partition 2

Edge list

Vertex set

1

0

2

0

2

1

5

2

1

4

3

4

3

5

5

4

b) Original edge layout in COO format

c) Format after graph partitioning

0 1 2 3 4 5

Figure 6: The example of graph partitioning.

groups by vertically dividing the edge list of a partition into 𝑁𝑔

chunks with the same number of edges. However, even though
the chunks have the same number of edges, the execution time is
fluctuated due to irregular access patterns.
Execution time estimator. In order to achieve balanced sched-
uling of chunks, we propose a polynomial regression model [51]
to estimate the execution time of each chunk, 𝑇𝑐 , with respect to
the number of edges, 𝐸𝑐 , and the number of source vertices, 𝑉𝑐 .
We randomly select subsets of the chunks of the dataset (shown in
Table 4) and collect corresponding execution time of them to fit the
regression model. The final model is shown in Equation 3, where
the highest orders of 𝑉𝑐 and 𝐸𝑐 are two and one, respectively. The
𝐶0 is a scale factor specific to the application, and 𝛼0 to 𝛼4 are four
model coefficients.

𝑇𝑐 = 𝐶0 · (𝛼4𝑉 2
𝑐 + 𝛼3𝐸𝑐𝑉𝑐 + 𝛼2𝑉𝑐 + 𝛼1𝐸𝑐 + 𝛼0) (3)

Scheduling plan generation.Given the estimated execution time
of each chunk, ThunderGP invokes a greedy algorithm to find the
final balanced scheduling plan. The search process is fast since the
number of kernel groups is generally small. An example is shown
in Figure 7, where a graph composed of two partitions is scheduled
to four kernel groups. Furthermore, instead of executing the apply
stage after all the partitions finish the scatter-gather stage [32], we
overlap the execution of them by immediately executing the apply
stage for a partition finishing the scatter-gather stage. Putting it all
together, our scheduling method achieves 30% improvement over
the sequential scheduling method on real-world graphs.
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Figure 7: Scheduling plan example of two partitions on four
scatter-gather kernel groups (G1 to G4).

7 EVALUATION
We now present the evaluations of ThunderGP as well as a case
study. All the presented results are based on actual implementations.

7.1 Experimental Setup
7.1.1 Hardware Platforms. We experimented on two platforms.
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Table 4: The graph datasets.
Graphs |𝑉 | |𝐸 | 𝐷𝑎𝑣𝑔 Graph type
rmat-19-32 (R19) [52] 524.3K 16.8M 32 Synthetic
rmat-21-32 (R21) [52] 2.1M 67.1M 32 Synthetic
rmat-24-16 (R24) [52] 16.8M 268.4M 16 Synthetic
graph500-scale23-ef16 (G23) [53] 4.6M 258.5M 56 Synthetic
graph500-scale24-ef16 (G24) [53] 8.9M 520.5M 59 Synthetic
graph500-scale25-ef16 (G25) [53] 17.0M 1.0B 61 Synthetic
wiki-talk (WT) [53] 2.4M 5.0M 2 Communication
web-google (GG) [53] 916.4K 5.1M 6 Web
amazon-2008 (AM) [53] 735.3K 5.2M 7 Social
bio-mouse-gene (MG) [53] 45.1K 14.5M 322 biological
web-hudong (HD) [53] 2.0M 14.9M 7 Web
soc-flickr-und (FU) [53] 1.7M 15.6M 9 Social
web-baidu-baike (BB) [53] 2.1M 17.8M 8 Web
wiki-topcats (TC) [54] 1.8M 28.5M 16 Web
pokec-relationships (PK) [54] 1.6M 30.6M 19 Social
wikipedia-20070206 (WP) [55] 3.6M 45.0M 13 Web
ca-hollywood-2009 (HW) [53] 1.1M 56.3M 53 Social
liveJournal1 (LJ) [54] 4.8M 69.0M 14 Social
soc-twitter (TW) [53] 21.3M 265.0M 12 Social

Table 5: The graph applications.

App. Description
PR Scores the importance and authority of a website through its links
SpMV Multiplies a sparse matrix (represented as a graph) with a vector
BFS Traverses a graph in a breadth ward from the selected node
SSSP Finds the shortest path from a selected node to another node
CC Detects nodes which could spread information very efficiently
AR Measures the transitive influence or connectivity of nodes
WCC Finds maximal subset of vertices of the graph with connection

VCU1525. The first platform is the Xilinx Virtex UltraScale+ FPGA
VCU1525 Acceleration Development Kit + Intel Xeon Gold 5222
CPU. The FPGA has 4 × 16GB DDR4 DIMMs and three SLRs with
the middle SLR owning two memory channels and the static region,
as shown in Figure 5. SDAccel 2018.3 design suite is used as the
development environment.
U250. The second platform is the Xilinx Alveo U250 Data Center
Accelerator Card + Intel Xeon E5-2603 V3 CPU. The FPGA has 4 ×
16GB DDR4 DIMMs and four SLRs with each owning an indepen-
dent memory channel. SDAccel 2019.1 is used for development.

7.1.2 Applications and Datasets. Seven common graph processing
applications are used as benchmarks: PageRank (PR), Sparse Matrix
Vector Multiplication (SpMV), Breadth-First Search (BFS), Single
Source Shortest Path (SSSP), Closeness Centrality (CC), ArticleR-
ank (AR), and Weakly Connected Component (WCC). Detailed
descriptions are shown in Table 5. The graph datasets are given in
Table 4, which contain synthetic [52] directed graphs and real-world
large-scale directed graphs. All data types are 32-bit integers.
7.2 Accelerator Template Evaluation
7.2.1 Benefits of Memory Optimizations. We incrementally enable
the four memory optimizations to the accelerator template: caching
(CA), coalescing (CO), prefetching (PRE) and access/execute decou-
pling (DAE) and compare the performance to the baseline, which
does not have any one of them, on a single SLR of the VCU1525
platform. The frequency of the implementations is set to 200MHz
for easy comparison. Figure 8 shows the speedup breakdown of PR
algorithm on different graphs with different methods enabled. The
trends observed are similar to other algorithms.

Firstly, our memory optimizations cumulatively contribute to
the final performance, and the final speedup can be up to 31×.
Secondly, for real-world graphs with high degree (HW and MG),
our optimizations deliver less speedup because long memory access
latency is naturally hidden by the relatively more computation
(more edges). Thirdly, the speedup is more significant for large
graphs (R24, G24, and G25) since they havemore partitions resulting
in more random accesses to the source vertices.

7.2.2 Benefits of Timing Optimizations. We also evaluate the effi-
cacy of our timing optimizations for frequency improvement, which
are stream slicing (SS) and multi-level data duplication (MDD), on
a single SLR of the VCU1525 platform. Two timing optimizations
are incrementally enabled over a baseline that is without any op-
timizations. As shown in Table 7, both optimizations improve the
frequency and cumulatively deliver up to 77% improvement in total.
Table 7: Frequency (MHz) improvement on a single SLR.
Freq. PR SpMV BFS SSSP CC AR WCC
Baseline 168 253 257 184 198 173 247
SS 242 286 281 231 267 273 243
SS+MDD 297 296 299 300 287 301 296
Improvement 77% 17% 16% 63% 45% 74% 20%

7.3 Scalability Evaluation
Scalability is evaluated on the VCU1525 platform under the follow-
ing configurations: one memory channel with one SLR (1CH/1SLR),
two memory channels with two SLRs (2CHs/2SLRs), three memory
channels with three SLRs (3CHs/3SLRs), and four memory channels
with three SLRs (4CHs/3SLRs), as shown in Figure 9.

Two factors contribute to good scalability. On the one hand,
ThunderGP guarantees enough PEs and kernel groups to consume
the bandwidth of multiple memory channels. On the other hand,
the proposed partition scheduling method ensures a high utilization
of multiple kernel groups.

7.4 Overall Performance
The performance of two platforms on fourteen graphs and seven
applications is collected in Table 9, where the performance metric
is million edges traversed per second (MTEPS) with all the edges
counted. Meanwhile, resource utilization is shown in Table 6. For
implementations of seven applications on two platforms, the system
generated number of kernel groups is four, and the numbers of PEs
of three stages are all sixteen. The VCU1525’s partition size is 512K
vertices per scatter-gather kernel group (8MB in total) while U250’s
is 1M vertices (16MB in total). Moreover, the cache sizes in the
scatter stage of VCU1525 and U250 are 32KB and 64KB, respectively.
The power is reported by the SDAccel, which includes both static
and dynamic power consumption of the FPGA chip.

Based on the above two tables, we have the following high-
lights. Firstly, our implementations achieve high resource utiliza-
tion and high frequency on different multi-SLR FPGA platforms.
The resource consumption variance of different applications mainly
comes from the apply stage that has distinct computations. And
only the apply stage requires DSPs, hence a low DSP utilization.
The throughput can be up to 6,400 MTEPS (highlighted in orange in
Table 9) while the power consumption is only around 46W. Taking
SpMV as an example, the memory bandwidth utilization is 87% on
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Table 6: Resource utilization, frequency (MHz) and power consumption (Watt) on multi-SLR FPGAs.
Plat. VCU1525 U250
App. PR SpMV BFS SSSP CC AR WCC PR SpMV BFS SSSP CC AR WCC
Freq. 256 243 241 237 247 263 245 243 250 250 251 242 240 250
BRAM 69% 62% 66% 75% 67% 69% 65% 51% 47% 51% 58% 51% 53% 49%
URAM 52% 52% 52% 52% 52% 52% 52% 53% 53% 53% 53% 53% 53% 53%
CLB 88% 82% 84% 88% 86% 87% 85% 64% 61% 62% 64% 64% 64% 63%
DSP 1.4% 1.6% 0.2% 0.2% 0.2% 2.1% 0.2% 0.8% 0.9% 0.1% 0.1% 0.1% 1.2% 0.1%
Power 46 41 44 46 43 46 43 48 42 43 46 44 45 43
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Table 8: The speedup of absolute performance and band-
width efficiency over state-of-the-art designs.

App. G. Work
Absolute Throughput Bandwidth Efficiency

𝑻𝒉𝒓 . 𝑶𝒖𝒓𝒔 𝑺𝒑. 𝑻𝒉𝒓.
𝑩𝑾

𝑶𝒖𝒓𝒔 𝑺𝒑.

SpMV
WT Hitgraph [24] 1,004 2,874 2.9x 16.73 84.00 5.0x

Chen et al. [32] 551 2,874 5.2x 45.92 84.00 1.8x

LJ Hitgraph [24] 1,906 3,003 1.6x 31.77 80.17 2.5x

Chen et al. [32] 1,052 3,003 2.9x 87.67 80.17 0.9x

PK GraphOps[27] 128 3,729 29.2x 8.36 102.78 12.3x

PR
R21 Hitgraph [24] 3,410 5,015 1.5x 56.83 110.59 1.9x

Chen et al. [32] 1,109 5,015 4.5x 92.42 110.59 1.2x

LJ Hitgraph [24] 2,110 3,186 1.5x 35.17 94.73 2.7x

Chen et al. [32] 1,111 3,186 2.9x 92.58 94.73 1.0x

PK GraphOps[27] 139 4,001 28.7x 9.67 78.36 8.0x

BFS
WT Chen et al. [32] 579 2,717 4.7x 48.25 116.63 2.4x

PK Chen et al. [32] 1,152 4,251 3.7x 96.00 128.19 1.3x

SSSP WT Hitgraph [24] 2,156 2,427 1.1x 35.93 85.98 2.4x

Chen et al. [32] 619 2,427 3.9x 51.58 85.98 1.7x

average and up to 99%, which indicates that the accelerators require
more bandwidth to scale up the performance. Secondly, the per-
formance of small graphs (highlighted in blue in Table 9) is not as
superior as others since they have limited number of partitions (e.g.,
one or two); hence, some kernel groups are under-utilized. Thirdly,
for large-scale graphs such as TW, the U250 demonstrates better
performance than VCU1525. Benefiting from the larger partition
size, the access to source vertices has better data locality.

7.5 Comparison with State-of-the-art Designs
We compare our system with three state-of-the-art works: Hit-
graph [24], Chen et al. [32], and GraphOps [27], as shown in Table 8.

The absolute speedup is defined as the ratio of our performance
on the VCU1525 platform to the performance numbers in their
papers. The bandwidth efficiency (MTEPS/(GB/s)) is calculated by
the performance dividing by the available memory bandwidth of
the corresponding platform. Since other designs do not consider
the overhead of utilizing multiple SLRs, our bandwidth efficiency
is obtained from a single SLR of the VCU1525 platform.

Compared to RTL-based approaches like HitGraph [24], our
implementations deliver up to 1.1× ∼ 2.9× absolute speedup and
1.9× ∼ 5.0× improvement on bandwidth efficiency, benefiting from
the pipelined execution of the scatter and the gather stages. When
comparing with the two HLS-based works, ThunderGP achieves up
to 29.2× absolute speedup and 12.3× improvement on bandwidth
efficiency over GraphOps [27], and 5.2× absolute speedup and 2.4×
improvement on bandwidth efficiency over Chen et al. [32].

7.6 Case Study: Propagation Prediction of
COVID-19

To demonstrate how ThunderGP can be efficiently used to address
the real-world graph problems, we conduct a case study, the propa-
gation prediction of Coronavirus Disease 2019 (COVID-19).

Timely prediction of the time-varying prevalence of infection at
the population level plays an important role in deploying proper
blocking actions such as quarantine or social distance to mitigate
the spread of the virus. Current propagation prediction models [56]
are generally composed by the spatial cellular automata (CA) and
the temporal susceptible-infectious-removed (SIR) model, where
the cell represents a residential area (e.g., a county) and maintains
its status (e.g., infection rate) which is updated by the SIR model
according to transmissions between neighbour cells. Hence, the
propagation can be formulated as a graph processing problem [57],
where the counties and their connections are represented by a
graph, and the SIR updating by the propagation within the graph.

For a quick assessment on programmability, we asked a graduate
student to implement three propagation models with ThunderGP:
the CA-SIR [58], the CA-SEIR [59], and the CA-SAIR [60] models.
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Table 9: Throughput (MTEPS) of different graph processing algorithms on multi-SLR FPGAs.
Plat. VCU1525 U250
App. PR SpMV BFS SSSP CC AR WCC PR SpMV BFS SSSP CC AR WCC
R19 4,210 3,864 4,669 3,505 3,972 4,260 3,948 3,653 4,424 4,521 4,059 3,737 3,663 3,798
R21 5,015 4,190 5,417 3,901 4,623 4,848 4,584 4,669 5,056 6,028 4,879 4,783 4,667 4,901
R24 4,599 3,781 3,437 3,430 4,339 4,486 4,328 4,732 4,946 5,897 4,285 4,939 4,732 4,988
G23 5,223 4,203 5,461 3,893 4,850 5,097 4,828 4,976 5,308 6,477 5,035 5,049 4,975 5,243
G24 5,039 4,037 5,216 3,725 4,752 4,927 4,704 5,040 5,305 5,772 4,428 3,705 5,040 5,303
G25 4,464 3,615 4,660 3,343 4,344 4,389 4,356 4,978 4,072 4,974 3,864 3,661 4,984 5,254
WT 2,884 2,874 2,717 2,427 2,776 2,833 2,776 2,251 2,938 2,630 2,583 2,369 2,253 2,405
GG 2,069 2,257 2,044 1,750 1,997 1,962 1,874 1,776 2,966 2,044 1,962 1,923 1,760 1,822
AM 2,102 2,194 2,073 1,865 2,010 2,063 1,958 1,752 2,811 2,123 2,062 1,849 1,763 1,841
MG 4,454 3,883 4,939 3,699 4,077 4,285 4,088 3,756 4,195 4,949 4,378 3,914 3,737 3,891
HD 2,520 2,490 1,282 2,167 2,581 2,427 2,347 2,473 3,325 2,936 2,772 2,751 2,478 2,587
FU 3,779 3,458 3,527 3,155 3,805 3,710 3,558 3,339 4,390 4,193 3,651 3,687 3,341 3,495
BB 2,822 2,675 1,325 2,431 2,831 2,729 2,649 2,777 3,602 3,434 3,063 2,963 2,768 2,875
TC 3,093 2,956 3,665 2,847 2,893 2,964 2,837 2,826 3,385 4,193 3,654 2,856 2,827 3,006
PK 4,001 3,729 4,251 3,169 3,833 3,909 3,716 3,630 4,372 4,629 3,927 3,865 3,662 3,841
WP 3,030 2,994 3,112 2,491 2,993 2,931 2,894 3,255 3,652 4,058 3,417 3,341 3,259 3,432
HW 4,641 4,249 5,510 3,952 4,435 4,535 4,319 4,073 4,850 5,960 4,909 4,183 4,050 4,363
LJ 3,186 3,003 3,408 2,623 3,113 3,081 3,099 3,342 3,693 4,329 3,614 3,557 3,328 3,708
TW 2,938 2,801 2,120 2,425 2,962 2,853 2,894 3,538 3,959 3,671 3,585 3,759 3,533 3,806

Table 10: Development efforts and speedup of three models.
Models CA-SIR [58] CA-SEIR [59] CA-SAIR [60]
Code for Accelerator ∼23 lines ∼36 lines ∼31 lines
Code on Host side† ∼20 lines ∼27 lines ∼28 lines
Development effort‡ ∼12 hours ∼12 hours ∼12 hours
Speedup over [60] 216 × 419 × 402 ×

† The code for formatting the dataset to COO format is not counted.
‡ The compiling time for the FPGA image is excluded.
The dataset is obtained from the COVID-19 Impact Analysis Plat-
form [61, 62], containing 3.1K counties and 2.3M connections. The
example of implementing an accelerator of the CA-SAIR model is
shown in Listing 1. For the scatterFunc, each county (a cell) calcu-
lates the infection rate to push to a neighbour county according
to its infection rate and their connectivity strength that quantifies
both the volume and frequency of inter-county movement. For
the gatherFunc, the county accumulates all infection rates that
are pushed to it. In the applyFunc, the gathered infection rate is
used for calculating the prevalence of infection. Note that the apply
stage involves many user-defined parameters, as shown in Listing 1.
Table 10 quantifies the development effort involved, and we also
compare with the Python-based CPU implementation [60].

1 #define prop_t int
2 /* Scatter */
3 inline prop_t scatterFunc(prop_t srcInfection , prop_t

connectivityStrength){
4 prop_t propagationValue = (( srcInfection) * (

connectivityStrength));
5 return propagationValue;
6 }
7 /* Gather */
8 inline prop_t gatherFunc(prop_t dstInfection , prop_t

propagationValue){
9 return (( dstInfection) + (propagationValue));
10 }
11 /* Apply */
12 inline prop_t applyFunc( prop_t oriInfection , prop_t

accumulatedInfection , ...){
13 // User defined parameters of the function
14 #pragma ThunderGP APPLY_BASE_DATATYPE float
15 #pragma ThunderGP DEF_ARRAY thetaS
16 float *thetaS;
17 #pragma ThunderGP DEF_SCALAR beta
18 float beta;
19 ......
20 // Write the function of the apply stage
21 float updatedI = beta * thetaS * (oriInfection / N +

accumulatedInfection / N);
22 ......
23 float newProp = (1 - alpha) * thetaS - updatedI ....
24 return newProp;
25 }

Listing 1: Customizing accelerator for the CA-SAIRmodel.

The benefit of using ThunderGP for this problem is twofold.
Firstly, ThunderGP achieves up to 419× speedup over the CPU-
based solution. Being able to predicate the propagation in a short
time could assist fast and timely reactions to the spread condition.
Secondly, CA-SIR models are fast evolving with the increasing un-
derstanding of the virus. With ThunderGP, the developers write
only dozens of lines of code for accelerating the prediction typically
for a day, which minimizes the development effort. This prelimi-
nary result is promising, and the system is open-sourced, and we
believe more case studies can be performed to further assess the
programmability improvement.

8 CONCLUSION
Many important applications in social networks, cybersecurity and
machine learning involve very large graphs. This has led to a surg-
ing interest in high-performance graph processing, especially on
heterogeneous platforms in search for the most cost-effective per-
formance. FPGAs, with fine-grained parallelism, energy efficiency
and reconfigurability, are natural candidates. However, the gap
between high-level graph applications and underlying CPU-FPGA
platforms requires developers to understand hardware details and
program with lots of efforts, which hinders the adoption of FPGAs.
In this paper, we proposed ThunderGP, an open-source HLS-based
graph processing framework, to close the design gap. ThunderGP
provides a set of comprehensive high-level APIs and an automated
workflow for FPGA accelerator building in software-oriented para-
digm. Developers only need to write high-level specifications of the
target graph algorithm. From these specifications, ThunderGP gen-
erates the actual hardware accelerator that scales to multiple SLRs,
achieving to 6,400 MTEPS, i.e., 2.9× faster than the state-of-the-art.
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