
44

ThunderGP: Resource-Efficient Graph Processing

Framework on FPGAs with HLS

XINYU CHEN, National University of Singapore

FENG CHENG, National University of Singapore and City University of Hong Kong

HONGSHI TAN, National University of Singapore

YAO CHEN, Advanced Digital Sciences Center

BINGSHENG HE and WENG-FAI WONG, National University of Singapore

DEMING CHEN, University of Illinois at Urbana–Champaign

FPGA has been an emerging computing infrastructure in datacenters benefiting from fine-grained parallelism,

energy efficiency, and reconfigurability. Meanwhile, graph processing has attracted tremendous interest in

data analytics, and its performance is in increasing demand with the rapid growth of data. Many works have

been proposed to tackle the challenges of designing efficient FPGA-based accelerators for graph processing.

However, the largely overlooked programmability still requires hardware design expertise and sizable devel-

opment efforts from developers. ThunderGP, a high-level synthesis based graph processing framework on

FPGAs, is hence proposed to close the gap, with which developers could enjoy high performance of FPGA-

accelerated graph processing by writing only a few high-level functions with no knowledge of the hardware.

ThunderGP adopts the gather-apply-scatter model as the abstraction of various graph algorithms and realizes

the model by a built-in highly parallel and memory-efficient accelerator template. With high-level functions

as inputs, ThunderGP automatically explores massive resources of multiple super-logic regions of modern

FPGA platforms to generate and deploy accelerators, as well as schedule tasks for them. Although Thun-

derGP on DRAM-based platforms is memory bandwidth bounded, recent high bandwidth memory (HBM)

brings large potentials to performance. However, the system bottleneck shifts from memory bandwidth to

resource consumption on HBM-enabled platforms. Therefore, we further propose to improve resource ef-

ficiency of ThunderGP to utilize more memory bandwidth from HBM. We conduct evaluation with seven

common graph applications and 19 graphs. ThunderGP on DRAM-based hardware platforms provides 1.9×
∼ 5.2× improvement on bandwidth efficiency over the state of the art, whereas ThunderGP on HBM-based

hardware platforms delivers up to 5.2× speedup over the state-of-the-art RTL-based approach. This work is

open sourced on GitHub at https://github.com/Xtra-Computing/ThunderGP.

The work of F. Cheng was done when he was a visiting student in National University of Singapore.

Authors’ addresses: X. Chen, H. Tan, B. He, and W.-F. Wong, National University of Singapore, 15 Computing Dr, Singa-

pore 117418; emails: xinyuc@nus.edu.sg, hongshi@u.nus.edu, hebs@comp.nus.edu.sg, wongwf@nus.edu.sg; F. Cheng, City

University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong; email: feng.cheng@my.cityu.edu.hk; Y. Chen, Ad-

vanced Digital Sciences Center, 1 Create Way, 14-02 Create Tower, Singapore 138602; email: yao.chen@adsc-create.edu.sg;

D. Chen, University of Illinois at Urbana–Champaign, 250 CSL1308 W Main St Urbana, Illinois 61801, United States; email:

dchen@illinois.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1936-7406/2022/12-ART44

https://doi.org/10.1145/3517141

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

https://github.com/Xtra-Computing/ThunderGP
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3517141
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3517141&domain=pdf&date_stamp=2022-12-09

44:2 X. Chen et al.

CCS Concepts: • Computer systems organization→ Parallel architectures; • Hardware→Hardware

accelerators;

Additional Key Words and Phrases: FPGA, HBM, HLS, graph processing, framework

ACM Reference format:

Xinyu Chen, Feng Cheng, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS. ACM Trans. Reconfig. Tech-

nol. Syst. 15, 4, Article 44 (December 2022), 31 pages.

https://doi.org/10.1145/3517141

1 INTRODUCTION

Due to the failure of Dennard Scaling and the appearance of Dark Silicon, successive CPU genera-
tions exhibit diminishing performance returns. Heterogeneous computing, where devices such as
GPUs, FPGAs, and ASICs work as accelerators, is a promising solution to sustain the increasing
performance demand of various applications [7, 10, 11, 15, 54, 56]. With fine-grained parallelism,
energy efficiency, and reconfigurability, FPGA is becoming an attractive device for application ac-
celeration and now can be found in computing infrastructure in the cloud or datacenters such
as Amazon F1 cloud [2], Nimbix [43], and Alibaba cloud [1]. Nevertheless, programming with
hardware description language (HDL) for efficient accelerators is a well-known pain-point
due to the sizable development efforts and critical hardware expertise required [17]. High-level

synthesis (HLS) partially alleviates the programming gap by providing high-level abstractions
of the hardware details [13, 14, 39]. However, in practice, careful handcrafted optimizations and
a deep understanding of the transformation from application to hardware implementation are
still required [17, 18, 36, 42, 58, 59]. To make this issue even more challenging, recent FPGAs are
equipped with advanced hardware features such as multiple super-logic regions (SLRs) and
high bandwidth memory (HBM). In this article, we study the performance of graph processing
on recent FPGAs with the consideration of optimizing those recent hardware features.

Graph processing is an important service in datacenters that has attracted tremendous interests
for data analytics, because graphs naturally represent the datasets of many important application
domains such as social networks, cybersecurity, and machine learning [26, 40]. The exponential
growth of data from these applications has created a pressing demand for performant graph pro-
cessing. This has attracted a large body of research in building efficient FPGA-based accelerators
for graph processing [4, 19, 20, 22, 24, 27, 37, 44, 45, 52, 69–74]. On the whole, their insightful
architectural designs, together with extensive optimizations, deliver significant performance im-
provement and energy savings compared to CPU-based solutions, demonstrating that the FPGA
is a promising platform for graph processing.

Still, a large gap remains between high-level graph applications and underlying state-of-the-
art FPGA platforms for graph application developers (mainly software engineers). In Table 1, we
survey some system features of existing FPGA-based graph processing frameworks and generic ac-
celerator designs that can process large-scale graphs. Specifically, the features considered include
software-based explicit APIs, automation, optimization for new features found in recent FPGAs,
comprehensiveness of evaluation, and public availability. There are several important observations.
First, many rarely provide explicit software-based APIs for accelerator customization. Furthermore,
many of them were developed in HDL. Migrating these to other graph applications involves signif-
icant effort. Second, although several works adopt HLS, such as GraphOps [45] and Chen et al. [9],
the lack of automation still requires manually composing efficient pipelines and exploring the
design space. Third, although GraphLily explored the optimizations for multiple SLRs and HBM

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

https://doi.org/10.1145/3517141

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:3

Table 1. Survey of Existing FPGA-Based Large-Scale Graph Processing Accelerators

Existing Works APIs1 PL2 Auto3 SLR4 HBM5 Eva6 #Apps7 Public8

(F) GraphGen [44] N.A. HDL ✔ ✘ ✘ HW 2 ✘
(F) FPGP [19] ✘ HDL ✘ ✘ ✘ HW 1 ✘
(F) HitGraph [72] N.A. HDL ✔ ✘ ✘ SIM 4 ✔
(F) ForeGraph [20] ✘ HDL ✘ ✘ ✘ SIM 3 ✘
(F) Zhou et al. [73] ✘ HDL ✔ ✘ ✘ SIM 2 ✘
(F) Chen et al. [9] ✘ HLS (OpenCL) ✘ ✘ ✘ HW 4 ✔
(F) Asiatici and Ienne [3] Acc. Chisel ✘ ✔ ✘ HW 3 ✘
(L) GraphOps [45] ✘ HLS (MaxJ) ✘ ✘ ✘ HW 6 ✔
(A) FabGraph [52] ✘ HDL ✘ ✘ ✘ SIM 2 ✘
(A) Zhou et al. [71] ✘ HDL ✘ ✘ ✘ SIM 3 ✘
(A) AccuGraph [69] ✘ HDL ✘ ✘ ✘ SIM 3 ✘
(O) GraphLily [28] Host HLS (C++) ✘ ✔ ✔ HW 3 ✔

(F) ThunderGP Acc. & Host HLS (C++) ✔ ✔ ✔ HW 7 ✔
1Whether the system provides explicit software-based programming interfaces for accelerator customization (Acc.) and

accelerator management on the host side (Host); N.A., uncertain.
2Required programming language for development with the system.
3Whether the system supports automated design flow for developers.
4Whether the system has been optimized for FPGAs with multiple SLRs (from Xilinx).
5Whether the system has been optimized for HBM-enabled FPGA platforms.
6Evaluation is based on simulation analysis (SIM) or real hardware implementation (HW).
7Number of evaluated graph applications with the system in corresponding papers.
8Whether the code of the system is publicly available.

(F) Represents a framework claimed in the corresponding paper, (L) a library, (A) an accelerator architecture, and (O) an

overlay.

of the latest FPGA generations, they failed to customize accelerators as their main technique is to
reuse bitstreams of basic modules (e.g., SpMV/SpMSpV) for graph applications. Last, many of them
only evaluate a few applications based on simulation and are not publicly available. As a result,
embracing FPGA-accelerated graph processing requires not only hardware design expertise but
also lots of development efforts.

We propose ThunderGP, an HLS-based open-source graph processing framework on FPGAs.
With ThunderGP, developers only need to write high-level functions that use explicit high-level
language (C++) based APIs that are hardware agnostic. ThunderGP automatically generates high-
performance accelerators on state-of-the-art FPGA platforms that have multiple SLRs. It manages
the deployment of the accelerators using graph partitioning and partition scheduling. ThunderGP
is also tuned to support the new HBM memory module. This article is an extended version of a
conference paper [12], where we optimize the resource consumption of the design such that we
can instantiate more compute units to take advantage of the massive memory bandwidth offered
by HBM.

Specifically, our work makes the following contributions:

• We provide an open-source full-stack system—from explicit high-level APIs for mapping
graph algorithms to execution on the CPU-FPGA platform—which dramatically saves the
programming efforts in FPGA-accelerated graph processing.
• We propose a well-optimized HLS-based accelerator template together with a low-overhead

graph partitioning method to guarantee superior performance for various graph processing
algorithms even with large-scale graphs as input.
• We develop an effective and automated accelerator generation and graph partition scheduling

method that deploys the suitable number of kernels and conducts the workload balancing.
• We perform the evaluation on three FPGA platforms with seven real-world graph processing

applications to demonstrate the efficiency and flexibility of ThunderGP. Implementations

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:4 X. Chen et al.

on HBM-enabled FPGAs run at around 250 MHz, achieving up to 10,000 million traversed

edges per second (MTEPS). This is a 5.2× performance improvement compared to the state-
of-the-art RTL-based solution [72].

The rest of the article is organized as follows. We introduce the background and related work
in Section 2 and then illustrate the overview of ThunderGP in Section 3. The accelerator template
design and automated accelerator generation are presented in Section 4 and Section 5, respectively,
followed by graph partitioning and scheduling in Section 6. In Section 7, we illustrate the main
design improvements to support the emerging HBM-enabled hardware platforms. We conduct a
comprehensive evaluation in Section 8. Finally, we conclude our work in Section 9.

2 BACKGROUND AND RELATED WORK

2.1 HLS for FPGAs

Traditionally, HDLs like VHDL and Verilog are used as programming languages for FPGAs. How-
ever, coding with HDLs is time consuming and tedious and requires an in-depth understanding of
underlying hardware to maximize performance. To alleviate this programming gap and boost the
adoption of FPGA-based application acceleration, FPGA vendors and research communities have
been actively developing HLS tools, which translate a design description in high-level languages
like C/C++ to synthesizable implementations for the targeted hardware. For example, Intel has re-
leased the OpenCL SDK for FPGAs [30] by which developers could use OpenCL to program their
FPGAs. Xilinx has developed the SDAccel tool-chain [63], later migrated into Vitis, which supports
C/C++/System/OpenCL for programming FPGAs.

Related work. Due to the difficulty in extracting enough parallelism at the compiling time, effi-
cient HLS implementations still require hardware knowledge and significant development efforts;
hence, a number of works improve the efficiency of HLS implementations [6, 8, 11, 17, 18, 36, 42, 47,
50, 51, 55, 58, 59]. In another work, Cong et al. [17] proposed a composable architecture template
to reduce the design space of HLS designs. Cong et al. [18] also presented buffer restructuring ap-
proaches to optimize the bandwidth utilization with HLS. ST-Accel proposed by Ruan et al. [50] ad-
dresses the inefficiency of applying OpenCL to the streaming workload by enabling the host/FPGA
communication during kernel execution. Li et al. [36] presented aggressive pipeline architecture
to enable HLS to efficiently handle irregular applications. Wang et al. [59] proposed an analytical
framework for tuning the pragmas of HLS designs. In this work, we offer an HLS-based accelerator
template with functional C++-based APIs to ease the generation of efficient accelerators for graph
algorithms.

2.2 HBM on FPGAs

As many of the current datacenter applications are data intensive, requiring the ever-increasing
amount of bandwidth, state-of-the-art FPGA platforms such as Xilinx Alveo platforms [60] and
Intel Stratix 10 devices [31] have started equipping their FPGAs with HBM to bridge the band-
width gap. HBMs are essentially 3D-stacked DRAMs. During the manufacturing process, DRAM
chips are stacked vertically on a high-speed logic layer with the vertical interconnect technology
called through silicon via to reduce connectivity impedance. HBM usually comes with a number
of independent interfaces called channels, each of which accesses an independent set of DRAM
banks. For example, the Xilinx Alveo U280 platform [67] has 32 independent HBM channels, pro-
viding up to 460 GB/s of theoretical memory bandwidth, 425 GB/s in practical [29]. This is almost
6× higher than the Alveo U250, a platform with four traditional DRAM channels. To enable easy
access to the independent memory channels by user kernels, Xilinx has introduced a built-in cross-
bar in the HBM memory controller. In our experimental platform, the Alveo U280, there are eight
fully connected unit switches, and each switch connects to four HBM channels, giving a total of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:5

32 channels. In addition, the eight switches are connected bidirectionally as a global crossbar for
global addressing. In summary, along with a built-in crossbar, HBM-enabled FPGA platforms have
more memory channels, hence more memory bandwidth compared to traditional platforms with
multiple DRAM channels.

Related work. The FPGA research community has been actively exploring the effective usage
of multiple channels of HBM. Yang et al. [68] proposed a high-throughput parallel hash table ac-
celerator on HBM-enabled FPGAs, which assigns a dedicated processing engine (PE) and hash
table copy to one or more adjacent HBM channels to avoid a complex memory interface. Liu et al.
[38] proposed ScalaBFS, which has multiple PEs to exploit the high bandwidth of HBM to improve
efficiency. Kara et al. [32] implemented three workloads from the data analytics domain on HBM-
enabled FPGAs, showing that the achieved performance can surpass a 14-core XeonE5 significantly
in certain cases. Since their benchmarks indicate that any congestion on a particular memory chan-
nel reduces the effective bandwidth when utilizing the built-in crossbar, they use HBM channels
independently for multiple PEs. Similarly, Choi et al. [16] argued that the shared links among the
built-in crossbar can become a bottleneck that limits the effective bandwidth. Furthermore, the
existing HLS has limited capability in producing an efficient communication architecture that en-
ables burst access across multiple HBM channels. Hence, they proposed a customized interconnect
for HBM-enabled FPGA boards. As the original design of ThunderGP already supports multiple
independent DRAM channels, it effectively allows the extension to more HBM channels. However,
since ThunderGP adopts many optimizations for the complex graph processing problem, we find
that the resource consumption of kernels has to be optimized to utilize the memory bandwidth
of HBM. Hence, the particular challenge of extending ThunderGP to HBM-enabled platforms is
optimizing resource consumption.

ALGORITHM 1: The GAS Model

1: while not done do

2: for all e in Edges do � The scatter stage
3: u = new update
4: u.dst = e.dst

5: u.value = Scatter(e.weight, e.src.value)
6: end for

7: for all u in Updates do � The gather stage
8: u.dst.accum = Gather(u.dst.accum, u.value)
9: end for

10: for all v in Vertices do � The apply stage
11: Apply(v.accum, v.value)
12: end for

13: end while

2.3 Graph Processing on FPGAs

The gather-apply-scatter model. The gather-apply-scatter (GAS) model [25, 49] provides a high-
level abstraction for various graph processing algorithms and is widely adopted for graph process-
ing frameworks [20, 44, 71–73]. ThunderGP’s accelerator template adopts a variant of push-based
GAS models [49] (shown in Algorithm 1), which processes edges by propagating from the source
vertex to the destination vertex.

The input is an unordered set of directed edges of the graph. Undirected edges in a graph can
be represented by a pair of directed edges. Each iteration contains three stages: the scatter, the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:6 X. Chen et al.

gather, and the apply. In the scatter stage (lines 2 through 6), for each input edge with the for-
mat of 〈src,dst ,weiдht〉, an update tuple is generated for the destination vertex of the edge. The
update tuple is of the format of 〈dst ,value〉, where dst is the destination vertex of the edge and
value is generated by processing the vertex properties and edge weights. In the gather stage (lines
7 through 9), all update tuples generated in the scatter stage are accumulated for destination ver-
tices. The apply stage (lines 10 through 12) takes all values accumulated in the gather stage to
compute the new vertex property. The iterations will be ended when the termination criterion
is met. ThunderGP exposes corresponding functional APIs to customize logic of three stages for
different algorithms.

Related work. There have been several research works on FPGA accelerated graph processing.
Table 1 summarizes the representative studies that could process large-scale graphs. In the early
stage, Nurvitadhi et al. [44] proposed the GraphGen, which accepts a vertex-centric graph spec-
ification and then produces an accelerator for the FPGA platform. However, developers need to
provide pipelined RTL implementations of the update function. Dai et al. [19] presented FPGP,
which partitions large-scale graphs to fit into on-chip RAMs to alleviate the random accesses in-
troduced during graph processing. More recently, they further proposed ForeGraph [20], which
exploits BRAM resources from multiple FPGA boards. FabGraph from Shao et al. [52] delivers an
additional 2× speedup by enabling two-level caching to ForeGraph. Nevertheless, the two preced-
ing works adopt the interval-shard-based partitioning method and buffers both source and des-
tination vertices, resulting in a significant data replication factor and heavy preprocessing over-
head [3]. Moreover, these two works are simulations that are not publicly available. Engelhardt
and So [22, 23] proposed two vertex centric frameworks: GraVF and GraVF-M. However, they can
only support small graphs that can fit completely in the on-chip RAMs and fail to scale to large-
scale graphs. Zhou et al. [70–73] proposed a set of FPGA-based graph processing works. Their
latest work, HitGraph [72], vertically partitions the large-scale graphs to enlarge the partition size.
However, edges have to be sorted to minimize memory row conflicts. This is a significant pre-
processing overhead especially for very large graphs. Furthermore, HitGraph executes the scatter
and the gather stages in a bulk synchronous parallel execution model where the intermediate data
need to be stored and read from the global memory. In contrast, ThunderGP adopts the pipelined
execution for its two stages, hence reducing memory access to the global memory. Yao et al. [69]
proposed AccuGraph, a graph processing framework with an efficient parallel data conflict solver.
Although vertical partitioning is adopted, edges are sorted during graph partitioning. Recently,
Asiatici and Ienne [3] explored graph processing accelerators on multi-SLR FPGAs with caches for
thousands of simultaneous misses instead of minimizing the cache misses. However, the perfor-
mance is worse than HitGraph [72] and ThunderGP [12] caused by bank conflicts in the proposed
miss-optimized memory system. In terms of development, all preceding works require HDL pro-
gramming, as summarized in Table 1.

In addition, a few HLS-based graph processing frameworks have been developed. Oguntebi and
Olukotun [45] presented an open-source modular hardware library, GraphOps, which abstracts
the low-level graph processing related hardware details for quickly constructing energy-efficient
accelerators. However, optimizations such as on-chip data buffering are not exploited in their de-
signs, leading to poor memory performance. In addition, it still requires developers to manually
compose pipelines or modify the logic of basic components if the built-in modules are not enough
to represent the application logic.

Chen et al. [9] proposed an OpenCL-based graph processing on FPGAs. However, memory ac-
cesses are underoptimized. Although these two works embrace HLS, significant development ef-
forts on constructing the code and balancing the pipeline are still needed. As far as we know, all

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:7

Fig. 1. Overview of ThunderGP.

existing works on the subject require hardware knowledge and specialized tuning. ThunderGP is
hence proposed to improve the performance of graph processing on state-of-the-art FPGA plat-
forms without compromising programmability and usability.

The emerging HBM memory system of FPGAs has attracted a lot of attention due to its poten-
tials for graph processing applications. GraphLily [28] is the first graph linear algebra overlay that
explores HBM. With a more constrained configuration space, it offers a much faster compilation
via bitstream reuse across applications. Our framework, however, yields customized accelerators
for graph applications that are more flexible. Our previous study of ThunderGP [12] has almost
fully utilized the available memory bandwidth of DRAM-based platforms while using a portion
of computation resources, which indicates that the performance can further scale up if there is
more available bandwidth. This article makes three additional significant contributions. First, we
optimize the resource consumption of kernels to instantiate more kernels to take advantage of
the high memory bandwidth of HBM. Second, we propose two optimizations to access HBM chan-
nels efficiently. Third, we conduct comprehensive evaluations of ThunderGP on the HBM-enabled
platform and compare its performance with that on the DRAM-based platform.

3 THUNDERGP OVERVIEW

Generally, a complete design process of an FPGA-accelerated graph application mainly contains
two phases: accelerator customization for the graph algorithm, and accelerator deployment and
execution (preprocessing graphs and scheduling graphs). ThunderGP aims to ease the burden of
both phases for developers by providing a holistic solution from high-level hardware-oblivious
APIs to execution on the hardware platform.

3.1 ThunderGP Building Blocks

Figure 1 shows the overview of ThunderGP, where both DRAM-based and HBM-enabled platforms
are supported. We illustrate the main building blocks of ThunderGP as follows.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:8 X. Chen et al.

Table 2. Acc-APIs (UDFs)

APIs Parameters Return

prop_t scatterFunc () Source vertices, destination vertices, edge properties. Update tuples
Description: Calculates update values for all neighbors of a source vertex (destination vertices)

prop_t gatherFunc () Update tuples, buffered destination vertices. Accumulated value
Description: Gathers update values for the buffered destination vertices

prop_t applyFunc () Vertex properties, outdegree, etc. Latest vertex properties
Description: Updates all vertex properties for the next iteration

Accelerator templates. The built-in accelerator templates provide a general and efficient architec-
ture with high parallelism and efficient memory accesses for many graph algorithms expressed by
the GAS model. Together with the high-level APIs, it abstracts away the hardware design details
for developers and eases the generation of efficient accelerators for graph processing. ThunderGP
currently has two accelerator templates: one for DRAM-based platforms and the other for HBM-
enabled platforms. Their differences are illustrated in Section 7.

Accelerator generation. The automated accelerator generation produces synthesizable accelera-
tors with unleashing the full potentials of the underlying FPGA platforms. Given the model of
the underlying FPGA platform (e.g., VCU1525 (DRAM) or U280(HBM)) (step ①), it takes the cor-
responding built-in accelerator template as one input and the user-defined functions (UDFs)

of the scatter, the gather, and the apply stages of the graph algorithm (step ②) as other inputs.
The synthesizable accelerator is generated by effective heuristics that explore a suitable number
of kernels to fully utilize the memory bandwidth of DRAM-based platforms or fully utilize the
resources of HBM-enabled platforms while avoiding the placement of kernels across SLRs. After
that, it invokes the corresponding development environment for compilation (including synthesis
and implementation) of the accelerator.

Graph partitioning and scheduling. ThunderGP adopts a vertical partitioning method based on
destination vertex without introducing heavy preprocessing operations such as edge-sorting [69,
71–73] to enable vertex buffering with on-chip RAMs. The developer passes the graph dataset to
the API for graph partitioning (step ③). The partition size is set automatically by the system regard-
ing the generated accelerator architecture. Subsequently, the partition scheduling method slices
partitions into chunks, estimates the execution time of each chunk of partitions by a polynomial
regression model based estimator, and then searches an optimal scheduling plan through a greedy
algorithm.

Finally, through ThunderGP’s APIs, the accelerator image is configured to the FPGA, and the
partitions and partition scheduling plan are sent to the global memory (DRAM or HBM) of the
FPGA platform. The generated accelerator is invoked in a push-button manner on the CPU-FPGA
platform for performance improvement. Although the current adopted development environment
is from Xilinx, ThunderGP is compatible with other FPGA development environments (e.g., Intel
OpenCL SDK [30]).

3.2 ThunderGP APIs

ThunderGP provides two sets of APIs based on C++: accelerator APIs (Acc-APIs) for customizing
accelerators for graph algorithms and Host-APIs for accelerator deployment and execution.

Acc-APIs. Acc-APIs are UDF APIs for representing graph algorithms with the GAS model with-
out touching accelerator details, as shown in Table 2. The type of vertex property (prop_t) should be
defined at first. For the scatter stage and the gather stage, developers write functions with the scat-
terFunc and the gatherFunc, respectively. As the apply stage may require various inputs, develop-
ers could define parameters through ThunderGP pragmas (e.g., “#pragma ThunderGP DEF_ARRAY

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:9

Table 3. Host-APIs (System Provided)

APIs and Parameters Description

graphPartition (graph_t * graphFile)
Partitions the large-scale graphs with
the partition size determined automatically

schedulingPlan (string * graphName)
Generates fine-grained scheduling plan of
partitions according to number of kernels

graphPreProcess (graph_t * graphFile)
Combines the graphPartition, schedulingPlan,
and data transfer functions

acceleratorInit (string * accName)
Initializes the device environment and
configures the bitstream to the FPGA

acceleratorSuperStep (string * graphName)
Processes all partitions
for one iteration (super step)

acceleratorRead (string * accName))
Reads results back to the host and releases
all dynamic resources

Fig. 2. Overview of the accelerator template.

A” will add array A as the function’s parameter) and then write the processing logic of the apply-
Func.

Host-APIs. As shown in Table 3, developers could pass the graph dataset to the graphPartition
API for graph partitioning and generate the scheduling plan through the schedulingPlan API. To
simplify the invocation of the generated accelerator, ThunderGP further encapsulates the device
management functions in the Xilinx Runtime Library [66] for accelerator initialization, data move-
ment between accelerator and host, and execution control.

Next, we introduce details of each component for DRAM-based platforms in Sections 4 through
6. We present the support for HBM-enabled platforms in Section 7, with focus on differences and
improvements over the support for DRAM-based platforms.

4 ACCELERATOR TEMPLATE

The accelerator template is equipped with efficient dataflow and many application-oriented op-
timizations, which essentially guarantees the superior performance of various graph algorithms
mapped with ThunderGP.

4.1 Architecture Overview

The overview of the accelerator template is shown in Figure 2, where the arrows connecting
modules indicate the HLS streams [63]. The template exploits sufficient parallelism from the ef-
ficient pipeline and multiple PEs. The Scatter PEs access source vertices with application-oriented
memory optimizations (details in Section 4.3); meanwhile, the Gather PEs adopt large capacity
UltraRAMs (URAMs) for buffering destination vertices (details in Section 4.4). The Apply PEs

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:10 X. Chen et al.

adopt memory coalescing and burst read optimizations. In addition, the template embraces two
timing optimizations for high frequency (details in Section 4.5).

Pipelined scatter and gather. The state-of-the-art design [72] with vertical partitioning follows
the bulk synchronous parallel execution model to benefit from on-chip data buffering for both
source and destination vertices. Instead, ThunderGP adopts pipelined execution for the scatter
stage and the gather stage with buffering only destination vertices in on-chip RAMs, which elimi-
nates the write and read of the update tuple to the global memory. As a result, ThunderGP accesses
source vertices directly from the global memory. To achieve high memory access efficiency, we
carefully apply four memory optimizations for the scatter stage (details in Section 4.3).

Multiple PEs with shuffle. ThunderGP adopts multiple PEs for the scatter, the gather, and the ap-
ply stages to improve throughput. Specifically, Gather PEs process distinctive ranges of the vertex
set to maximize the size of the partition. The ith Gather PE buffers and processes the destina-
tion vertex with the identifier (vid) of vid mod M = i , where M is the total number of PEs in
the gather stage. Compared to PEs buffering the same vertices [20, 52], ThunderGP buffers more
vertices on-chip. To dispatch multiple update tuples generated by the Scatter PEs to Gather PEs
according to their destination vertices in one clock cycle, ThunderGP adopts an OpenCL-based
shuffling logic [9, 10]. Although Gather PEs only process the edges whose destination vertex is in
the local buffer and may introduce workload imbalance among PEs, the observed variation of the
number of edges processed by Gather PEs is negligible, less than 7% on real-world graphs and 2%
on synthetic graphs.

To ease the accelerator generation for various FPGA platforms, the numbers of PEs (Scatter PE,
Gather PE, and Apply PE), the buffer size in the gather stage, and the cache size in the scatter stage
(details in Section 4.3) are parameterized.

4.2 Data flow

When processing a partition, the vertex set is first loaded into buffers (on-chip RAMs) of Gather
PEs with each owning an exclusive data range. Then multiple edges in the edge list with the format
of 〈src,dst ,weiдht〉 are streamed into the scatter stage in one cycle. For each edge, source vertex
related properties will be fetched from the global memory with src as the index, together with
the weight of the edge (weiдht), to calculate the update value (value) for the destination vertex
(dst) according to the scatterFunc. The generated update tuples with the format of 〈value,dst〉 are
directly streamed into the shuffle stage, which dispatches them to corresponding Gather PEs in
parallel. The Gather PEs accumulate the value (value) for destination vertices that are buffered
in local buffers according to the gatherFunc. The buffered vertex set will be written to the global
memory once all edges are processed. The apply stage updates all vertices (multiple vertices per
cycle) for the next iteration according to the applyFunc.

4.3 Memory Access Optimizations

ThunderGP chooses not to buffer source vertices into on-chip RAMs not only because that enables
pipelined scatter and gather but also because our memory optimizations could perfectly match
the access pattern of source vertices. First, one source vertex may be accessed many times since
it may have many neighbors in a partition; therefore, a caching mechanism can be exploited for
data locality. Second, multiple Scatter PEs request source vertices simultaneously. The number of
memory requests can be reduced by coalescing the accesses to the same cache line. Third, the
source vertices of edges are in ascending order; hence, the access address of the source vertices
is monotonically increasing. A prefetching strategy [53] can be used to hide the long memory
latency. Fourth, the irregular graph structure leads to fluctuated throughput. With decoupling the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:11

Fig. 3. The scatter architecture. The blue and orange arrows show the execution pipeline and access pipeline,
respectively.

execution and access [5], the memory requests can be issued before the execution requires the
data, which further reduces the possibility of stalling the execution.

Figure 3 depicts the detailed architecture of the scatter stage, consisting of the src duplicator,
the memory request generator, the burst read engine, the cache, and the processing logic from
developers. During processing, multiple edges are streamed into the src duplicator module at
each clock cycle. The source vertices of the edges are duplicated for both the cache module
and the memory request generator module (step ①). The memory request generator module
outputs the necessary memory requests to the burst read engine module (step ②), which fetches
the corresponding properties of source vertices from the global memory into the cache module
(step ③ and step ④). The cache module returns the desired data to the Scatter PEs according to
the duplicated source vertices (step ⑤). Next, we describe the details of four memory optimization
methods.

Coalescing. The memory request generator module coalesces the accesses to source vertices from
multiple Scatter PEs into the granularity of a cache line (with the size of 512-bit on our test FPGAs).
Since the request address is monotonically increasing, it simply compares whether two consecutive
cache lines are the same or not. If they are the same, coalescing is performed; otherwise, the cache
line will be kept. Finally, the memory request generator sends the memory requests for the cache
lines that are not in the current cache (cache miss) to the burst read engine module (step ②).

Prefetching. We adopt the Next-N-Line Prefetching strategy [53], which prefetches successive N
cache lines from the current accessed cache line, and implement it in the burst read engine module
by reading the subsequent properties of source vertices from the global memory in a burst (step ③).
The number of prefetched cache lines (N) equals the burst length divided by the size of cache line.

Access/execute decoupling. This is implemented by separating the architecture to the pipeline
to process edges (the execution pipeline, shown with blue arrows in Figure 3) and the pipeline
to access source vertices (the access pipeline, shown with orange arrows in Figure 3). The src
duplicator module and the cache module are used to synchronize two pipelines.

Caching. The cache module updates the on-chip RAMs (as a direct-mapped cache with tags
calculated according to the source vertex index and the size of the cache) with the incoming cache
lines (step ④) and responds to requests from the execution pipeline by polling the on-chip RAMs
(step ⑤). The updating address is guaranteed to be ahead of the queried address to omit the conflicts.
To improve the parallelism of updating the cache, we partition the on-chip RAMs to multiple
chunks and slice the coming cache lines into multiple parts for updating different chunks in parallel.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:12 X. Chen et al.

Fig. 4. Streaming slicing (SS).

Similarly, the cache polling is executed in parallel by duplicating the cache for each Scatter PE, as
shown in Figure 3.

4.4 Utilizing URAMs

ThunderGP takes advantage of the large-capacity URAMs for buffering destination vertices in the
Gather PEs through two optimizations. First, the data width of URAM with ECC protected [64]
is 64-bit, whereas the destination vertex is usually 32-bit. To improve the utilization, we buffer
two vertices in one URAM entry with the mask operation for accessing the corresponding vertex.
Second, the write latency of URAM is two cycles, and the calculation of Gather PE also introduces
latency. Due to the true dependency of the accumulation operation, the HLS tool generates logic
with a high initiation interval (II) [63] to avoid the read after write (RAW) hazard (a read occurs
before the write is complete). To reduce the II of Gather PEs, we deploy a set of registers for each
Gather PE to cache the latest updates to URAMs. A coming update will compare with the latest
updates and be accumulated with the one matched in the registers. The read, calculation (with
fixed-point data), and write can be finished in one cycle with registers. An update tuple will be sent
out to the Gather PE, if the distance between its destination vertex and last processed destination
vertex is larger than two. This method guarantees enough distance for the updates to the same
vertex in URAMs, hence eliminating RAW hazard for URAMs.

4.5 Timing Optimizations

There are two design patterns prohibiting the implementations from achieving high clock fre-
quency. First, due to the tight logic resource requirements, the placements of multiple kernels may
be far from each other, requiring a long routing distance, as shown in Figure 4. In addition, the
kernels are connected with HLS streams implemented by BRAM blocks for deep ones (more than
the depth of 16) and shift registers for shallow ones (less than the depth of 16) [61], and BRAM
blocks are interleaved with logic resources in FPGAs. As a result, a deep stream may lead to critical
paths, as shown in the red lines in Figure 4. Second, the data duplication operation that copies one
data to multiple replicas may significantly increase the fan-out (the output of a single logic gate).
Since HLS tools lack fine-grained physical constraints for routing, we propose two intuitive timing
optimizations to improve the frequency: stream slicing and multi-level data duplication.

Stream slicing. The stream slicing technique slices a deep stream connected between two ker-
nels to multiple streams with smaller depths. For example, for a stream with a depth of 1024, we
reconstruct it into three streams with the depth of 512, 2 (for shift registers), and 512, respectively.
In this way, BRAMs from multiple BRAM blocks and shift registers in interleaved logic blocks are
used as data passers, as indicated in the green lines of Figure 4. Therefore, the long critical path is
cut to multiple shorter paths.

Multi-level data duplication. To solve the second problem, we propose a multi-level data dupli-
cation technique, which duplicates data through multiple stages instead of only one stage. In this
way, the high fan-out is amortized by multiple stages of logic, hence a better timing.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:13

5 ACCELERATOR GENERATION

Based on the accelerator template and inputs from developers, ThunderGP automatically gener-
ates the synthesizable accelerator to explore the full potentials of multi-SLR FPGA platforms with
multiple memory channels. A well-known issue of multi-SLR is the costly inter-SLR communica-
tion [14]. Furthermore, having multiple independent memory channels physically located in dif-
ferent SLRs worsens the efficient mapping of the kernels with high data transmission between the
SLRs [14, 57, 62]. Exploring the full potentials of the multi-SLR is generally a complicated problem
with a huge solution space [57].

By following the principle of utilizing all memory channels of the platform and avoiding cross
SLR kernel mapping, ThunderGP adopts effective heuristics to compute the desired number of
kernels within the memory bandwidth of the platform and fit the kernels into SLRs. Specifically,
ThunderGP groups M Scatter PEs, a shuffle, and N Gather PEs as a kernel group, called a scatter-

gather kernel group since they are in one pipeline. However, it groups X Apply PEs in another
kernel group, referred as an apply kernel group. For multi-SLR platforms with multiple memory
channels, each memory channel owns one scatter-gather kernel group that buffers the same set of
destination vertices and processes independently; however, memory channels have only one apply
group, as the apply stage needs to merge the results from multiple scatter-gather groups before
executing the apply logic.

Design space exploration. First, ThunderGP calculates the required numbers of PEs (M , N , and
X) of the scatter, gather, and apply stages to satisfy the memory bandwidth of the platform. The
M and N are calculated by Equation (1), where mem_datawidth means the data width of one
memory channel (512-bit on our test FPGAs) and the read_sizescatter stands for the total size of
data read from memory channel per cycle (depends on parameters of the function). The I Iscatter P E

and I Iдather P E are initiation intervals of the Scatter PEs and the Gather PEs and are with the values
of 1 and 2, respectively, in our accelerator template. The number of scatter-gather kernel groups
is then scaled to the number of memory channels of the platform while being constrained by
the number of memory ports. Note that the number of available memory ports on current HBM-
enabled platforms is limited (see Section 7.3). Similarly, the number of Apply PEs, X , of the only
apply kernel group is calculated by Equation (2).

mem_datawidth

read_sizescatter
=

M

IIscatter P E
=

N

IIдather P E
(1)

num_channels ×mem_datawidth

read_sizeapply
=

X

IIapplyP E
(2)

Second, fitting scatter-gather and apply kernel groups into multi-SLR is modeled as a multiple

knapsack problem [33] where kernel groups are items with different weights (resource consump-
tion) and SLRs are knapsacks with their capacities (resources). The buffer size in gather stage is the
main factor of resource consumption of the scatter-gather kernel group. The apply kernel group
usually occupies fewer resources. To achieve high utilization of URAMs and reasonable frequency,
ThunderGP initializes the buffer size of the scatter-gather kernel group to an empirical value, 80%
of the maximal URAM capacity of an SLR (SLRs may have different URAM capacities). If the fitting
fails, it recursively reduces to a half of the size to fit again. Then, the size of the cache in the scatter
stage is set to leverage the rest of the URAMs. All sizes are with the number of power of 2; hence,
the utilized URAM portion may not be precisely 80%. For DRAM-based FPGA platforms, since the
number of kernel group is small, we can always solve the knapsack problem in a short time and
fit the kernels into FPGAs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:14 X. Chen et al.

Fig. 5. The example implementation on VCU1525 with three SLRs and four memory channels.

Automated generation. The acceleration generation process is automated in ThunderGP, with the
following steps. First, with the inputs from developers, ThunderGP tunes the width of dataflow
streams; generates parameters of the apply function; and integrates the scatter, the gather, and
the apply functions to the accelerator template. Second, with the built-in hardware profiles for
the supported FPGA platforms, ThunderGP queries the number of SLRs, size of available URAMs,
number of memory channels, and the mapping between SLRs and memory channels according to
the platform model provided by developers. Third, through exploration with the preceding heuris-
tics, ThunderGP ascertains the numbers of PEs, the number of the scatter-gather kernel group, the
buffer size in the gather stage, and the cache size in the scatter stage for the platform. Fourth,
ThunderGP configures the parameters of the accelerator template and instantiates the scatter-
gather kernel groups and apply kernel group as independent kernels. Specially, ThunderGP in-
tegrates a predefined logic to the apply kernel group for merging the results from scatter-gather
kernel groups. Finally, ThunderGP interfaces kernel groups to corresponding memory channels
for generating the synthesizable code. Figure 5 shows an example on VCU1525 (details in Sec-
tion 8.1) with three SLRs, where all four memory channels are utilized, and four scatter-gather
kernel groups and one apply kernel group fit into the platform properly. In addition, our fitting
method prevents placing the scatter-gather kernel groups into the SLR-2, which has fewer re-
sources than other SLRs due to the occupation of the static region.

6 GRAPH PARTITIONING AND SCHEDULING

Large graphs are partitioned during the preprocessing phase to ensure the graph partitions fit into
the limited on-chip RAMs of FPGAs. Subsequently, the partitions are scheduled to memory chan-
nels to coordinate with the execution of the accelerator, especially with multiple kernel groups.
We now introduce our partitioning method and scheduling method, which are all encapsulated
into the Host-APIs.

6.1 Graph Partitioning

Some previous studies [19, 69, 71–73] perform edge sorting or reordering to ease the memory
optimizations of the accelerator, leading to heavy preprocessing overhead. Meanwhile, many oth-
ers [20, 52] adopt a interval-shard-based partitioning method, which buffers both source vertices
and destination vertices into on-chip RAMs. However, the heavy data replication factor leads to a
massive data transfer amount to the global memory.

ThunderGP adopts a low-overhead vertical partitioning method based on destination vertices.
The input is a graph in standard coordinate (COO) format [72], which means that the row indices
(source vertices) are sorted and the column indices (neighbors of a vertex) can either be random or

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:15

Fig. 6. The example of graph partitioning.

sorted. The outputs are graph partitions with each owning a vertex set and an edge list. Suppose the
graph hasV vertices and the scatter-gather kernel group of the generated accelerator can bufferU
vertices. The vertices will be divided into �V /U � partitions with the ith partition having the vertex
set with indices ranging from (i − 1) ×U to i ×U . The edges with the format of 〈src,dst ,weiдht〉
will be scanned and dispatched into the edge list of the �dst/U �th partition. An example is shown
in Figure 6, where the FPGA can buffer three vertices, and the graph has six vertices. Note that
source vertices of edges are still in ascending order even after partitioning. On the one hand, the
proposed method does not introduce heavy preprocessing operations such as edge sorting. On
the other hand, it reduces the number of partitions from �V /U �2 with the interval-shard-based
partitioning method [20, 52] to �V /U �.

6.2 Partition Scheduling

With multiple scatter-gather kernel groups, the partitions should be appropriately scheduled to
maximize the utilization of computational resources. We hence propose a low-overhead fine-
grained partition scheduler. Assume we have Nд scatter-gather kernel groups for the implementa-
tion on a multi-SLR FPGA. Instead of one partition per kernel group, we schedule one partition to
Nд kernel groups by vertically dividing the edge list of a partition into Nд chunks with the same
number of edges. However, even though the chunks have the same number of edges, the execution
time is fluctuated due to irregular access patterns.

Execution time estimator. To achieve balanced scheduling of chunks, we propose a polynomial
regression model [46] to estimate the execution time of each chunk,Tc , with respect to the number
of edges, Ec , and the number of source vertices, Vc . We randomly select subsets of the chunks of
the dataset (shown later in Table 6) and collect corresponding execution time of them to fit the
regression model. The final model is shown in Equation (3), where the highest orders ofVc and Ec

are 2 and 1, respectively. The C0 is a scale factor specific to the application, and α0 to α4 are four
model coefficients.

Tc = C0 ·
(
α4V

2
c + α3EcVc + α2Vc + α1Ec + α0

)
(3)

Scheduling plan generation. Given the estimated execution time of each chunk, ThunderGP in-
vokes a greedy algorithm to find the final balanced scheduling plan. The search process is fast

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:16 X. Chen et al.

Fig. 7. Scheduling plan example of two partitions on four scatter-gather kernel groups (G1 through G4).

since the number of kernel groups is generally small. An example is shown in Figure 7, where a
graph composed of two partitions is scheduled to four kernel groups. These chunks are transferred
to corresponding memory channels according to the connectivity of kernel groups, before start-
ing the computation. Furthermore, instead of executing the apply stage after all partitions finish
the scatter-gather stage [9], we overlap the execution of them by immediately executing the ap-
ply stage for a partition finishing the scatter-gather stage. Putting it all together, our scheduling
method achieves 30% improvement over the sequential scheduling method on real-world graphs.

7 HBM SUPPORT

The memory bandwidth requirements of many data-intensive applications have driven FPGA ven-
dors to actively develop HBM-enabled FPGA platforms that offer benefits in performance, power,
and footprint [60]. As a representative data-intensive application, graph processing generally has
a high communication-to-computation ratio [41], leading to memory bandwidth being critical
to performance. Thus, HBM has huge potential for improving the overall performance of Thun-
derGP. However, fully taking advantage of HBM bandwidth is non-trivial. We present the resource-
efficient design to improve the HBM bandwidth utilization.

7.1 Challenges in Adopting HBM

The main feature of HBM-enabled platforms compared with DRAM-based platforms is that they
have much higher memory bandwidth coming from more memory channels (e.g., 32 channels).
In ThunderGP, this shifts the main system bottleneck from memory bandwidth to resource con-
sumption. ThunderGP scales the numbers of kernels to saturate the memory bandwidth of various
platforms with different amounts of resources and the number of memory channels. DRAM-based
platforms, being pin limited, usually have a limited number of memory channels, therefore lim-
iting memory bandwidth. For example, our experimental platforms—the VCU1525 and the Alveo
U250 (in Section 8.1)—only have four memory channels, which provide 77-GB/s peak memory
bandwidth. Graph processing algorithms are essentially memory-bounded on these platforms, and
ThunderGP can always instantiate enough kernels to saturate the memory bandwidth to achieve a
maximized performance. However, current HBM-enabled FPGA platforms have dozens of memory
channels with massive memory bandwidth, but resources are limited. For instance, the Alveo U280
platform (details in Section 8.1) has 32 memory channels providing up to 460-GB/s peak bandwidth
but has fewer resources compared to the Alveo U250 platform. Through our experiments, Thun-
derGP could no longer fit a suitable number of kernels into the platform to saturate the memory
bandwidth of HBM because of this resource constraint. Thus, the system bottleneck is shifted from

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:17

Fig. 8. The main modifications of duplicator module design of the filter in the shuffle stage.

memory to computation (or resources) of FPGAs. Although we can expect future generations of
HBM-enabled FPGAs to have more resources, they will also have more HBM channels. Achieving
a good balance is therefore important for performance.

7.2 Resource-Efficient Design

The HBM-based version of ThunderGP uses the same graph partitioning and scheduling as the
DRAM-based ones. What is different is that to instantiate more kernel groups, we optimize the
detailed design of the accelerator template further to reduce its resource consumption. First, we
simplified the design of the shuffle in the scatter-gather kernel group. Then, we redesigned the
logic for solving the RAW hazard. In the next, we shall introduce these modifications.

Improved shuffle design. As mentioned in Section 4, the shuffle logic [9] is used to dispatch mul-
tiple (N) update tuples to the designated Gather PEs in parallel for processing. The shuffle logic is
composed of the data duplicator, the validator, the decoder, and the filter, as shown in Figure 8(a).
Since each Gather PE can potentially process any tuple, the data duplicator duplicates all update tu-
ples for all datapaths, each owned by a Gather PE. The validator then compares the tuples’ Gather
PE IDs with the current Gather PE ID in parallel to generate an N bits mask code, which marks
the tuples to be processed. The decoder can output the positions and the number of tuples to
be processed according to the mask code. The filter fetches the tuples to be processed according
to the decoded information. Multiple concurrent kernels are used for asynchronous execution of
the filters. We mainly improved the design of the data duplicator and the filter to save resource
consumption of the shuffle.

The original data duplicator in the accelerator template dispatches the same set of update tuples
for the datapaths (each owned by a Gather PE) in parallel in the same cycle. This requires a one-to-
many data duplication logic, as shown in Figure 8(a). In the HBM version, we replace this with a
chain topology. As shown in Figure 8(b), a datapath fetches a set of update tuples and then passes
them to the next datapath. This modification introduces latency of processing a set of tuples but
does not downgrade overall throughput as the processing of different sets of tuples is pipelined.
More importantly, it eases the routing pressure for better timing and allows us to remove the
timing optimizations for some streams, hence saving resources.

The main changes in the filter are shown in Figure 9. The previous design of the filter first
writes tuples to be processed into a buffer in parallel. The Gather PE then retrieves the tuples one

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:18 X. Chen et al.

Fig. 9. The main modifications of filter module design of the filter in the shuffle stage.

by one from this buffer for processing (see Figure 9(a)). Note that writing tuples to be processed in
a buffer does not introduce data conflicts, as any data dependency has already been resolved at this
point [9]. However, it requires a fairly resource intensive many-to-many read logic, as each index
of the buffer may store any tuple. Instead, we now omit this sub-step and directly write the tuples
to be processed to the stream of the Gather PE according to their positions, as shown in Figure 9(b).
The total number of reads is the number of tuples to process, and a tuple can be read per iteration
according to the decoded positions. This improvement is able to reduce a half of the resource
consumption of the shuffle logic. Although HBM-Connect [16] and ScalaBFS [38] use multi-stage
networks for resource efficient all-to-all communication, the latency of data dispatching is also
increased. The tradeoffs in multi-stage designs are interesting studies for future work.

Improved RAW solver. The accumulation operation in the Gather PEs potentially introduces RAW
hazards, as illustrated in Section 4.4. Our original design for DRAM-based platforms handles RAW
in the stream (Figure 10(a)). A set of registers acts as a pool that receives the update tuples from the
shuffle and sends the update tuples to the Gather PE. On the one hand, a coming tuple must look up
recently updated destination vertices buffered in registers and accumulates with the corresponding
value if there is a match. At the same time, another logic calculates the distances between these
buffered destination vertices with the last sent destination vertex and sends out one tuple that has a
distance larger than 2. This guarantees that destination vertices access to URAMs are not the same
for any adjacent two updates. However, this method is pretty resource costly since it requires a
lot of combination logic for inserting update tuples into the register buffers, accumulating update
values, and selecting the tuple with enough distance in parallel. In the current design for HBM,
we simplify the RAW solver by using shift registers and integrating it into the Gather PEs. As
shown in Figure 10(b), we deploy a set of shift registers that buffers the latest updates coming
from the stream. Again, an incoming update tuple is first compared with the buffered tuples. If
there is a match, we use the buffered value as one of the operands of the accumulator instead of
the value from URAMs (as the value is not the newest one). The updated value will be written
to URAMs directly. Meanwhile, every buffered tuple in the shift registers shifts from the current
location to the next location, and the latest update value and destination vertex are appended to the
beginning of the registers. This improved method avoids complex combination logic introduced
in the original design, hence saving a large portion of resources for the RAW solver.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:19

Fig. 10. The main modifications of the RAW solver.

Combining these optimizations, we are able to significantly reduce the number of CLBs required
to implement a scatter-gather kernel group. This allows us to fit more kernels into FPGAs to match
the memory bandwidth of HBM. Although the same optimizations can also be applied on the
DRAM platforms, they are less useful. It will yield more space for other user functions, but for the
main graph processing application, performance will not improve because memory bandwidth is
the bottleneck in that case.

7.3 HBM-Specific Optimizations

The accelerator template for HBM-enabled platforms also has two platform-specific optimizations
for using HBM channels more efficiently.

Independent access to HBM channels. As introduced in Section 2.2, Xilinx HBM-enabled platforms
have a built-in crossbar that allows memory ports of user kernels to access any pseudo channel
of the HBM stack. However, potential concurrent accesses to the same channel concurrently sig-
nificantly reduce bandwidth due to congestion and the physical limit of one channel [16, 29]. Like
the original design, we access all HBM channels independently in a burst manner to maximize
the memory bandwidth. Graph partitions are transferred according to the connectivity between
memory ports of the kernels and the HBM channels before starting the computation. However, the
original template connects all memory ports of one scatter-gather kernel group to one memory
channel. Instead, as there are enough channels for HBM, we now let these memory ports connect
to different memory channels to improve memory efficiency.

Reducing the number of memory ports per kernel. Even though we reduce the resource con-
sumption of a scatter-gather kernel group by almost half, to really implement more kernels on
the hardware platform with the Xilinx tool-chain, we need to overcome another constraint—the
number of used memory ports. Currently, the maximal number of user memory ports is only 32
for the Alveo U280 platform [67]. The accelerator template for DRAM-based platforms uses four

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:20 X. Chen et al.

Table 4. Details of Three Hardware Platforms

Platforms FPGA Boards #SLRs Memory #Channels Server CPUs Tool-Chains

VCU1525 Virtex UltraScale+ FPGA VCU1525 Board 3 DRAM 4 × 16 GB Xeon Gold 5222 SDAccel 2018.3

U250 Alveo U250 Data Center Accelerator Card 4 DRAM 4 × 16 GB Xeon E5-2603 V3 SDAccel 2019.1

U280 Alveo U280 Data Center Accelerator Card 3 HBM 32 × 256 MB Xeon Gold 6246R Vitis 2020.2

memory ports for one scatter-gather kernel group for applications that require edge properties in
its computation: one for the source vertex, one for the destination vertex, one for edge properties,
and the last one for source vertex properties. The apply kernel requires at least as many mem-
ory ports as the scatter-gather kernels since it merges the results from these kernels. Combined,
the implemented kernel groups are largely limited (e.g., only six kernel groups are allowed for
the single-source-shortest-path application). To mitigate this limitation, we combine the memory
ports of kernels. Specifically, we merge the source vertex and destination vertex into one array
such that we can use one memory port for accessing them, and the saved memory ports are as
many as the scatter-gather kernels. With this unique constraint of HBM, accelerator generation
for HBM-enabled platforms first tunes the number of kernel groups to utilize all available memory
ports and then tries to fit kernels into the FPGA. If the fitting is failed, it recursively reduces the
number of kernel groups by 1 until all kernels can fit into the platform.

8 EVALUATION

In this section, we present a comprehensive evaluation of ThunderGP using seven graph applica-
tions on three hardware platforms, including two DRAM-based platforms and one HBM-enabled
platform. We first evaluate the efficiency of optimizations of the accelerator template. We then
demonstrate the performance of seven graph applications on three hardware platforms. Finally,
we compare ThunderGP with state-of-the-art designs in terms of absolute throughput and band-
width efficiency. All presented results are based on actual implementations.

8.1 Experimental Setup

Hardware platforms. Three hardware platforms (VCU1525, U250, and U280) are used in the eval-
uation. The type of the memory system, the number of SLRs, the number and capacity of memory
channels, the used server CPUs, and the tool-chains are summarized in Table 4. It is noteworthy
that although the HBM platform (U280) has more memory bandwidth, it has less memory capacity
and fewer resources compared to U250.

Applications and datasets. Seven common graph processing applications are used as benchmarks:
PR (PageRank), SpMV (Sparse Matrix Vector Multiplication), BFS (Breadth-First Search), SSSP (Sin-
gle Source Shortest Path), CC (Closeness Centrality), AR (ArticleRank), and WCC (Weakly Con-
nected Component). Detailed descriptions are shown in Table 5, where we also summarize the
setup of these applications including whether they need the apply stage and whether the edge
property is involved in the computation. The graph datasets are given in Table 6, which contain
synthetic [34] graphs and real-world large-scale graphs. All data types are 32-bit integers in our
experiments.

8.2 Accelerator Template Evaluation

Benefits of memory optimizations. We incrementally enable the four memory optimizations to
the accelerator template: CA (caching), CO (coalescing), PRE (prefetching), and DAE (access/exe-
cute decoupling), and compare the performance to the baseline, which does not have any one of
them on a single SLR of the VCU1525 platform. The frequency of the implementations is set to
200 MHz for easy comparison. Figure 11 shows the speedup breakdown of the PR algorithm on

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:21

Table 5. Graph Applications

Applications Functionality Description Apply? Edge Property?

PR Scores the importance and authority of a website through its links Yes No
SpMV Multiplies a sparse matrix (represented as a graph) with a vector No Yes
BFS Traverses a graph in a breadth ward from the selected node Yes No
SSSP Finds the shortest path from a selected node to another node Yes Yes
CC Detects nodes that could spread information very efficiently Yes No
AR Measures the transitive influence or connectivity of nodes Yes No
WCC Finds maximal subset of vertices of the graph with connection No No

Table 6. Graph Datasets

Graphs #Vertices #Edдes Deдreeavд GraphType
rmat-19-32 (R19) [34] 524,288 16,777,216 32 Synthetic
rmat-21-32 (R21) [34] 2,097,152 67,108,864 32 Synthetic
rmat-24-16 (R24) [34] 16,777,214 268,435,456 16 Synthetic
graph500-scale23-ef16 (G23) [48] 4,606,315 258,501,410 56 Synthetic
graph500-scale24-ef16 (G24) [48] 8,860,451 520,523,686 59 Synthetic
graph500-scale25-ef16 (G25) [48] 17,043,781 1,046,934,896 61 Synthetic
wiki-talk (WT) [48] 2,394,385 5,021,410 2 Communication
web-google (GG) [48] 916,400 5,105,039 6 Web
amazon-2008 (AM) [48] 735,324 5,158,388 7 Social
bio-mouse-gene (MG) [48] 45,102 14,506,196 322 biological
web-hudong (HD) [48] 1,984,485 14,869,484 7 Web
soc-flickr-und (FU) [48] 1,715,256 15,555,042 9 Social
web-baidu-baike (BB) [48] 2,141,301 17,794,839 8 Web
wiki-topcats (TC) [35] 1,791,490 28,511,807 16 Web
pokec-relationships (PK) [35] 1,632,804 30,622,564 19 Social
wikipedia-20070206 (WP) [21] 3,566,908 45,030,389 13 Web
ca-hollywood-2009 (HW) [48] 1,069,127 112,613,306 105 Social
liveJournal1 (LJ) [35] 4,847,571 68,993,773 14 Social
soc-twitter (TW) [48] 21,297,773 265,025,809 12 Social

Fig. 11. The performance speedup from four memory optimization methods.

different graphs with different methods enabled. Note that the trends observed on PR are similar
to other graph algorithms.

First, our memory optimizations cumulatively contribute to the final performance, and the final
speedup can be up to 31×. Second, for real-world graphs with a high degree (HW and MG), our

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:22 X. Chen et al.

Table 7. Frequency (MHz) Improvement on the DRAM-Based Platform

Freq. PR SpMV BFS SSSP CC AR WCC

Baseline 168 253 257 184 198 173 247
SS 242 286 281 231 267 273 243
SS+MDD 297 296 299 300 287 301 296

Improvement 77% 17% 16% 63% 45% 74% 20%

optimizations deliver less speedup because long memory access latency is naturally hidden by the
relatively more computation (more edges). Third, the speedup is more significant for large graphs
(R24, G24, and G25) since they have more partitions resulting in more random accesses to the
source vertices.

Benefits of timing optimizations. We also evaluate the efficacy of our timing optimizations for
frequency improvement, which are SS (stream slicing) and MDD (multi-level data duplication), on
a single SLR of the VCU1525 platform. Two timing optimizations are incrementally enabled over
a baseline that is without any optimizations. As shown in Table 7, both optimizations improve the
frequency and cumulatively deliver up to 77% improvement in total.

8.3 Performance on DRAM-Based Platforms

The performance of two platforms on 19 graphs and seven applications is collected in Table 8,
where the performance metric is million traversed edges per second (MTEPS) with all edges
counted. Meanwhile, resource utilization is shown in Table 9. Most of the configurations of dif-
ferent applications are the same. The system generated number of kernel groups is 4, and the
numbers of PEs of three stages are all 16. The VCU1525’s partition size is 512K vertices per scatter-
gather kernel group, whereas U250’s is 1M vertices. Moreover, the cache sizes in the scatter stage
of VCU1525 and U250 are 32 KB and 64 KB, respectively. The power is reported by the SDAccel,
which includes both static and dynamic power consumption of the FPGA chip.

Based on the preceding two tables, we have the following highlights. First, our implementations
achieve high resource utilization and high frequency on different multi-SLR FPGA platforms. The
resource consumption variance of different applications mainly comes from the apply stage that
has distinct computations. In addition, only the apply stage requires DSPs, hence a low DSP uti-
lization. The throughput can be up to 6,400 MTEPS (highlighted in orange in Table 8), whereas
the power consumption is only around 46W. Taking SpMV as an example, the memory bandwidth
utilization is 87% on average and up to 99%, which indicates that the accelerators require more
bandwidth to scale up the performance. Second, the performance of small graphs (highlighted in
blue in Table 8) is not as superior as others since they have a limited number of partitions (e.g.,
one or two); hence, some kernel groups are underutilized. Third, for large-scale graphs such as TW,
the U250 demonstrates better performance than VCU1525. Benefiting from the larger partition size,
the access to source vertices has a better data locality.

Performance with a resource-optimized accelerator template. We also study the impact of resource
optimizations presented in Section 7.2 on the original design [12] for DRAM-based platforms.
Figure 12 shows the performance of PR and SpMV on the U250 of the original design as well
as when the proposed resource optimizations are added. Both have four kernel groups for four
memory channels and use the same buffer sizes. The results show that their performance are com-
parable for most of the cases. However, for relatively dense graphs such as R19, R21, MG, and HW,
resource-optimized ThunderGP delivers better performance. This is due to an improved frequency,
up to 300 MHz. In addition, for very sparse graphs such as GG, AM, HD, and LG, the original

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:23

Table 8. Throughput (MTEPS) of Different Graph Processing Algorithms on Multi-SLR
DRAM-Based FPGAs

Table 9. Resource Utilization, Frequency (MHz), and Power Consumption (Watt) on DRAM-Based FPGAs

Plat. VCU1525 U250

App. PR SpMV BFS SSSP CC AR WCC PR SpMV BFS SSSP CC AR WCC

Freq. 256 243 241 237 247 263 245 243 250 250 251 242 240 250
BRAM 69% 62% 66% 75% 67% 69% 65% 51% 47% 51% 58% 51% 53% 49%
URAM 52% 52% 52% 52% 52% 52% 52% 53% 53% 53% 53% 53% 53% 53%
CLB 88% 82% 84% 88% 86% 87% 85% 64% 61% 62% 64% 64% 64% 63%
DSP 1.4% 1.6% 0.2% 0.2% 0.2% 2.1% 0.2% 0.8% 0.9% 0.1% 0.1% 0.1% 1.2% 0.1%
Power 46 41 44 46 43 46 43 48 42 43 46 44 45 43

design is slightly better, as the resource optimized version reduces the depth of some streams for
high resource efficiency. This comparison shows that the original design is memory bandwidth,
and not resource, bounded.

8.4 Performance on the HBM-Enabled Platform

The performance of the seven applications on the HBM-enabled platform (U280) is presented in
the left side of Table 10. As the HBM stack of the U280 platform only has 8-GB capacity and each
channel’s capacity is limited to 256 MB, we are able to process 14 out of 19 graphs. The system-
generated number of scatter-gather kernel groups is 6 for SSSP; 8 for PR, BFS, CC, AR, and WCC;
and 9 for SpMV. The partition size of the seven applications is 256K vertices per scatter-gather
kernel group except SSSP’s 512K. The cache size for each scatter PE of all applications is 128 KB.
Meanwhile, resource utilization of these implementations is shown in the left side of Table 11.
Power is reported by the Vitis 2020.2, which indicates power consumption of the FPGA chip.

Based on the preceding tables, we have the following highlights. First, implementations on the
HBM platform can have throughputs up to 10,000 MTEPS (highlighted in orange in Table 10),

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:24 X. Chen et al.

Fig. 12. Performance of the implementations with/without resource optimizations on U250.

Table 10. Throughput (MTEPS) of Different Graph Processing Algorithms on the HBM-Enabled Platform
(U280) and Speedup over the DRAM-Based Platform (VCU1525)

Table 11. Resource Utilization, Frequency (MHz), and Power Consumption (Watt) of Seven Applications on
the U280 Platform, and the Ratio to That of the DRAM-Based Platform (VCU1525)

Note: The ratio of resource consumption is calculated based on the consumed number of resources of one kernel group.

For frequency, a higher value is better; for resource consumption and power, lower is better.

whereas the power consumption of the FPGA chip is only around 50W. Second, the same as
DRAM-based platforms, the performance of small graphs (highlighted in blue in Table 10) is not
as superior to other larger graphs since they have a limited number of partitions (e.g., one or two);
hence, some kernel groups are underutilized. Third, SpMV has the best performance, as it has
one more kernel group than other applications. Last, implementations almost fully utilize the CLB

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:25

Fig. 13. Resource reduction of the
scatter-gather kernel group of PR
from two resource optimizations.

Fig. 14. Performance improvement of PR from HBM-aware opti-
mizations. “Original” indicates directly migrating ThunderGP to
U280 without any optimizations.

resources of the platform (92.1% on average), but the frequency is still as high as 250 MHz. We can
attribute this to the optimizations on the accelerator template. However, the high utilization does
not allow for more kernel groups to be instantiated. As a result, ThunderGP on the HBM-enabled
platform, even with resource optimizations, is still constrained by resource. It will require at least
twice the amount of resources to fully explore the HBM potentials since the current design with
eight kernel groups can only utilize 16 HBM channels.

Performance (HBM vs. DRAM). To demonstrate performance benefits especially from HBM, we
compare the performance of implementations on the HBM-enabled platform (U280) with that on
the DRAM-based platform (VCU1525), which has the same number of SLRs. The speedup of the
seven applications is presented in the right side of Table 10. The results show that implementa-
tions on HBM have significantly improved performance, which can be up to 2×. Especially, since
SpMV has the largest number of kernel groups, it generally delivers a better speedup over other
applications. This also indicates that scaling the number of kernel groups is the right direction
for higher performance. For some small graphs (GG and HD), the performance is worsening since
their cache efficiency is largely downgraded with more partitions.

Resource utilization (HBM vs. DRAM). To show the effectiveness of our resource optimizations,
we compare resource utilization of one kernel group (calculated by total resource consumption
dividing the number of instantiated kernel groups) of HBM-enabled platforms with that of DRAM-
based implementations, as shown in the right side of Table 11. Note that the calculation of re-
source consumption improvement is based on the real consumed number of resources (e.g., #CLBs,
#URAMs, and #DSPs) of one kernel group. In addition, we show a detailed breakdown of re-
source reduction of one scatter-gather kernel group from optimizing the shuffle and RAW solver in
Figure 13. First, the results show that our resource optimizations for the accelerator template of
HBM platforms can effectively halve the CLB resource utilization of one kernel group while main-
taining comparable or even better frequency. Specifically, both shuffle and RAW solver optimiza-
tion contribute almost equally to resource reduction. Second, the utilized URAMs and BRAMs of
one kernel group are halved since current implementations have kernel groups twice as many as
before. Third, power is increased slightly, as we used more resources overall. Last, the number of
DSPs consumed per kernel group is significantly reduced since U280 uses fewer DSPs compared
with VCU1525 for built-in functions.

Impact of HBM-aware optimizations. We also conduct experiments using the PR algorithm
as an example to measure the performance contributions of our HBM-aware optimizations (in
Section 7), including resource-efficient design and platform-specific optimizations. Using the
original design, we can implement five kernel groups on the U280 platform, one more than that
possible for the VCU1525 and U250 platforms. Using that as the baseline, we first enable resource
optimization and then add platform-specific optimizations. The experimental results shown
in Figure 14 indicate that both optimizations contribute to performance improvement. The re-
source optimizations increase the number of kernel groups from 5 to 8, whereas platform-specific

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:26 X. Chen et al.

Table 12. Speedup of Bandwidth Efficiency (Sp. BW.E.) of a Single SLR and Speedup of Absolute
Performance (Sp. Thr.) on VCU1525 and U280 Platforms over the State-of-the-Art Designs

Apps Graphs Works
BW.E.

(MTEPS/GB)
Thr.

(MTEPS)
Sp. BW.E.
(VCU1525)

Sp. BW.E.
(U280)

Sp. Thr.
(VCU1525)

Sp. Thr.
(U280)

SpMV

WT
HitGraph [72] 16.73 1004 5.0× 4.0× 2.9× 5.2×
Chen et al. [9] 45.92 551 1.8× 1.5× 5.2× 9.5×

LJ
HitGraph [72] 31.77 1906 2.5× NA 1.6× 2.3×
Chen et al. [9] 87.67 1052 0.9× NA 2.9× 4.2×

PK GraphOps [45] 8.36 128 12.3× NA 29.2× 54.3×

PR

R21
HitGraph [72] 56.83 3410 1.9× NA 1.5× 2.3×
Chen et al. [9] 92.42 1109 1.2× NA 4.5× 7.1×
*GraphLily [28] 16.32 4653 NA 2.3× 1.1× 1.7×

LJ
HitGraph [72] 35.17 2110 2.7× NA 1.5× 1.7×
Chen et al. [9] 92.58 1111 1.0× NA 2.9× 3.2×

PK
GraphOps [45] 9.67 139 8.0× NA 28.7× 36.8×
*GraphLily [28] 10.29 2933 NA 2.3× 1.4× 1.7×

HW *GraphLily [28] 26.21 7471 NA 1.5× 0.6× 1.1×

BFS

WT Chen et al. [9] 48.25 579 2.4× 1.9× 4.7× 6.8×

PK
Chen et al. [9] 96.00 1152 1.3× NA 3.7× 4.8×
*GraphLily [28] 6.89 1965 NA 3.8× 2.2× 2.8×

HW *GraphLily [28] 24.08 6863 NA 2.1× 0.8× 1.5×

SSSP
WT

HitGraph [72] 35.93 2156 2.4× 1.8× 1.1× 1.5×
Chen et al. [9] 51.58 619 1.7× 1.3× 3.9× 5.1×

R21 *GraphLily [28] 15.10 5646 NA 1.8× 0.7× 1.2×
HW *GraphLily [28] 32.77 9340 NA 1.1× 0.4× 0.8×

“NA” indicates that the graph is too large to be processed with one HBM channel due to memory capacity limitation.

*GraphLily is the state-of-the-art HBM-based implementation; others are based on DRAM platforms.

optimizations improve available memory bandwidth by separating accesses to multiple HBM chan-
nels. However, the improvement is marginal on graphs that have relatively poor performance, such
as GG, HD, and WP. This is because their performance is bounded by other factors such as cache
efficiency.

8.5 Comparison with State-of-the-Art Designs

As a sanity check, we compare our system on both DRAM-based and HBM-enabled platforms with
four state-of-the-art works: HitGraph [72], Chen et al. [9], GraphOps [45], and GraphLily [28], as
shown in Table 12. The absolute throughput speedup is defined as the ratio of our performance
on the VCU1525 and U280 platforms to the performance numbers in their papers. The bandwidth
efficiency is defined as throughput (MTEPS) under unit memory bandwidth (GB/s). Since the other
designs except GraphLily do not consider the overhead of utilizing multiple memory channels and
multiple SLRs, we obtain bandwidth efficiency from a single kernel group on a single memory
channel of the VCU1525 platform and the U280 platform, respectively. For GraphLily, we compare
the bandwidth efficiency of multiple channels by dividing overall performance by the peak memory
bandwidth from memory channels utilized, which is 285 GB/s and 208 GB/s for GraphLily and ours,
respectively.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:27

Compared to RTL-based approaches like HitGraph [72], our implementations on a similar plat-
form (VCU1525) deliver up to 1.1× ∼ 2.9× absolute speedup and 1.9× ∼ 5.2× improvement on
bandwidth efficiency. In addition, the absolute performance speedup on the HBM-enabled platform
(U280) can be up to 5.2×. This speedup benefits from the pipelined execution of the scatter and the
gather stages and our optimizations of the accelerator template. When comparing with the two
HLS-based works, ThunderGP on DRAM-based platform achieves up to 29.2× absolute speedup
and 12.3× improvement on bandwidth efficiency over GraphOps [45], and 5.2× absolute speedup
and 2.4× improvement on bandwidth efficiency over Chen et al. [9]. It is also remarkable that Thun-
derGP on the HBM-enabled platform (U280) has up to 50.2× absolute speedup over GraphOps [45].
Compared to the state-of-the-art HBM-based graph linear algebra overlay GraphLily [28], Thun-

derGP delivers 1.1× ∼ 2.8× performance speedup (except a 0.8× of SSSP on the HW graph) and
1.1× ∼ 3.8× bandwidth efficiency speedup while offering greater flexibility for porting new graph
algorithms.

9 CONCLUSION AND DISCUSSION

Many important applications in social networks, cybersecurity, and machine learning involve very
large graphs. This has led to a surging interest in high-performance graph processing, especially
on heterogeneous platforms in search of the most cost-effective performance. FPGAs, with fine-
grained parallelism, energy efficiency, and reconfigurability, are natural candidates. However, the
gap between high-level graph applications and underlying CPU-FPGA platforms requires develop-
ers to understand hardware details and program with lots of effort, which hinders the adoption of
FPGAs. ThunderGP, an open-source HLS-based graph processing framework, is proposed to close
the design gap. ThunderGP provides a set of comprehensive high-level APIs and an automated
workflow for FPGA accelerator building in a software-oriented paradigm. Developers only
need to write high-level specifications of the target graph algorithm. From these specifications,
ThunderGP generates hardware accelerators that scale to multiple memory channels of FPGA
platforms.

Recent evolvement of memory systems such as HBM significantly increases the peak memory
bandwidth of FPGA platforms. There have been high expectations about its use to improve the
performance of the memory-bounded graph processing problem. In this article, we hence extend
ThunderGP to support HBM-enabled platforms. The achieved throughput can be up to 10,000
MTEPS, and the end-to-end performance improvement compared with DRAM-based platforms
is around 2×. However, there is still a significant gap between this and the 6× improvement in
memory bandwidth brought about by HBM. Based on our own experiences, the following are the
main challenges in unleashing the full potential of the HBM on current FPGA platforms. First, the
enhanced memory bandwidth of HBM-enabled platforms comes at the cost of reduced resources.
For example, the Xilinx Alveo U280 card (HBM-enabled platform) has only three SLRs, one less
than the Xilinx Alveo U250 card (DRAM-based platform). Second, since the HBM stack is located
at only one of the SLRs, transferring data to other SLRs introduces a long data path that also
consumes significant resources. The HBM Memory Subsystem (HMSS) IP took up nearly 23% of
the resources when we instantiated all HBM channels. It is generally challenging to utilize all
memory bandwidth with the amount of resources available for user logic being limited. However,
we found that memory optimization usually consumes significant resources, specifically to the
graph processing problem. Hence, a potential solution is to simplify memory optimization and
increase the number of kernels. We intend to work on finding a balance between the number of
utilized HBM channels and the efficiency of memory channels so as to maximize overall system
performance.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

44:28 X. Chen et al.

ACKNOWLEDGMENTS

We thank the Xilinx Adaptive Compute Cluster (XACC) Program [65] for the generous hardware
donation. This work is in part supported by a MoE AcRF Tier 2 grant (MOE-000242-00) in Singa-
pore, a project funded by Advanced Research and Technology Innovation Centre of NUS (ECT-
RP1), and National Natural Science Foundation of China under grant No. 61929103, as well as
National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research
Excellence and Technological Enterprise (CREATE) programme.

REFERENCES

[1] Alibaba. 2020. Alibaba Cloud. Retrieved March 8, 2022 from https://www.alibabacloud.com/.

[2] Amazon. 2020. Amazon F1 Cloud. Retrieved March 8, 2022 from https://aws.amazon.com/ec2/instance-types/f1/.

[3] Mikhail Asiatici and Paolo Ienne. 2021. Large-scale graph processing on FPGAs with caches for thousands of simul-

taneous misses. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture

(ISCA’21). IEEE, Los Alamitos, CA, 609–622.

[4] Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun, and Torsten Hoefler. 2019. Graph processing

on FPGAs: Taxonomy, survey, challenges. arXiv preprint arXiv:1903.06697 (2019).

[5] George Charitopoulos, Charalampos Vatsolakis, Grigorios Chrysos, and Dionisios N. Pnevmatikatos. 2018. A decou-

pled access-execute architecture for reconfigurable accelerators. In Proceedings of the 15th ACM International Confer-

ence on Computing Frontiers. 244–247.

[6] Deming Chen, Jason Cong, Swathi Gurumani, Wen-Mei Hwu, Kyle Rupnow, and Zhiru Zhang. 2016. Platform choices

and design demands for IoT platforms: Cost, power, and performance tradeoffs. IET Cyber-Physical Systems: Theory &

Applications 1, 1 (2016), 70–77.

[7] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and Kun Wang. 2014. Enabling FPGAs in

the cloud. In Proceedings of the 11th ACM Conference on Computing Frontiers. 1–10.

[8] Tao Chen, Shreesha Srinath, Christopher Batten, and G. Edward Suh. 2018. An architectural framework for accel-

erating dynamic parallel algorithms on reconfigurable hardware. In Proceedings of the 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’18). IEEE, Los Alamitos, CA, 55–67.

[9] Xinyu Chen, Ronak Bajaj, Yao Chen, Jiong He, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2019. On-the-fly

parallel data shuffling for graph processing on OpenCL-based FPGAs. In Proceedings of the 2019 29th International

Conference on Field Programmable Logic and Applications (FPL’19). IEEE, Los Alamitos, CA, 67–73.

[10] Xinyu Chen, Yao Chen, Ronak Bajaj, Jiong He, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2020. Is FPGA

useful for hash joins? In Proceedings of the Conference on Innovative Data Systems Research (CIDR’20).

[11] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2021. Skew-oblivious data

routing for data intensive applications on FPGAs with HLS. In Proceedings of the 2021 58th ACM/IEEE Design Automa-

tion Conference (DAC’21). IEEE, Los Alamitos, CA, 937–942.

[12] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2021. ThunderGP: HLS-

based graph processing framework on FPGAs. In Proceedings of the 2021 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 69–80.

[13] Yao Chen, Swathi T. Gurumani, Yun Liang, Guofeng Li, Donghui Guo, Kyle Rupnow, and Deming Chen. 2016. FCUDA-

NoC: A scalable and efficient network-on-chip implementation for the CUDA-to-FPGA flow. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 24, 6 (2016), 2220–2233.

[14] Yao Chen, Jiong He, Xiaofan Zhang, Cong Hao, and Deming Chen. 2019. Cloud-DNN: An open framework for mapping

DNN models to cloud FPGAs. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. 73–82.

[15] Yao Chen, Xin Long, Jiong He, Yuhang Chen, Hongshi Tan, Zhenxiang Zhang, Marianne Winslett, and Deming Chen.

2020. HaoCL: Harnessing large-scale heterogeneous processors made easy. In Proceedings of the 2020 IEEE 40th Inter-

national Conference on Distributed Computing Systems (ICDCS’20). 1231–1234.

[16] Young-Kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong. 2021. HBM connect: High-performance

HLS interconnect for FPGA HBM. In Proceedings of the 2021 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. 116–126.

[17] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. 2018. Automated accelerator generation and optimization with

composable, parallel and pipeline architecture. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC’18). IEEE, Los Alamitos, CA, 1–6.

[18] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. 2017. Bandwidth optimization through on-chip memory re-

structuring for HLS. In Proceedings of the 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC’17). IEEE,

Los Alamitos, CA, 1–6.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

https://www.alibabacloud.com/
https://aws.amazon.com/ec2/instance-types/f1/

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:29

[19] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. FPGP: Graph processing framework on FPGA: A case

study of breadth-first search. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. 105–110.

[20] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong Yang. 2017. Foregraph: Exploring large-

scale graph processing on multi-FPGA architecture. In Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. 217–226.

[21] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions on Math-

ematical Software 38, 1 (2011), 1–25.

[22] Nina Engelhardt and Hayden Kwok-Hay So. 2016. GraVF: A vertex-centric distributed graph processing framework on

FPGAs. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL’16).

IEEE, Los Alamitos, CA, 1–4.

[23] Nina Engelhardt and Hayden K.-H. So. 2019. GraVF-M: Graph processing system generation for multi-FPGA platforms.

ACM Transactions on Reconfigurable Technology and Systems 12, 4 (2019), 1–28.

[24] Eric Finnerty, Zachary Sherer, Hang Liu, and Yan Luo. 2019. Dr. BFS: Data centric breadth-first search on FPGAs. In

Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC’19). IEEE, Los Alamitos, CA, 1–6.

[25] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation (OSDI’12). 17–30.

[26] Graph 500. 2020. Home Page. Retrieved March 8, 2022 from https://graph500.org/.

[27] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei Liao, and Hai Jin. 2019. A survey on

graph processing accelerators: Challenges and opportunities. Journal of Computer Science and Technology 34, 2 (2019),

339–371.

[28] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Accelerating graph linear algebra on HBM-

equipped FPGAs. In Proceedings of the International Conference on Computer Aided Design (ICCAD’21).

[29] Hongjing Huang, Zeke Wang, Jie Zhang, Zhenhao He, Chao Wu, Jun Xiao, and Gustavo Alonso. 2021. Shuhai: A tool

for benchmarking highbandwidth memory on FPGAs. IEEE Transactions on Computers. Early access, April 28, 2021.

[30] Intel. 2020. Intel FPGA SDK for OpenCL Pro Edition: Programming Guide. Retrieved March 8, 2022 from https://www.

intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html.

[31] Intel. 2021. Intel® Stratix® 10 FPGAs. Retrieved March 8, 2022 from https://www.intel.sg/content/www/xa/en/

products/details/fpga/stratix/10.html.

[32] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and Gustavo Alonso. 2020. High

bandwidth memory on FPGAs: A data analytics perspective. In Proceedings of the 2020 30th International Conference

on Field-Programmable Logic and Applications (FPL’20). IEEE, Los Alamitos, CA, 1–8.

[33] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Multidimensional knapsack problems. In Knapsack Problems.

Springer, 235–283.

[34] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. 2010. Kronecker

graphs: An approach to modeling networks. Journal of Machine Learning Research 11, 2 (2010), 985–1042.

[35] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved March

8, 2022 from http://snap.stanford.edu/data.

[36] Zhaoshi Li, Leibo Liu, Yangdong Deng, Shouyi Yin, Yao Wang, and Shaojun Wei. 2017. Aggressive pipelining of irregu-

lar applications on reconfigurable hardware. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium

on Computer Architecture (ISCA’17). IEEE, Los Alamitos, CA, 575–586.

[37] Cheng Liu, Xinyu Chen, Bingsheng He, Xiaofei Liao, Ying Wang, and Lei Zhang. 2019. OBFS: OpenCL based

BFS optimizations on software programmable FPGAs. In Proceedings of the 2019 International Conference on Field-

Programmable Technology (ICFPT’19). IEEE, Los Alamitos, CA, 315–318.

[38] Chenhao Liu, Zhiyuan Shao, Kexin Li, Minkang Wu, Jiajie Chen, Ruoshi Li, Xiaofei Liao, and Hai Jin. 2021. ScalaBFS:

A scalable BFS accelerator on FPGA-HBM platform. In Proceedings of the 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. 147–147.

[39] Xinheng Liu, Yao Chen, Tan Nguyen, Swathi Gurumani, Kyle Rupnow, and Deming Chen. 2016. High level synthesis

of complex applications: An H.264 video decoder. In Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’16). 224–233.

[40] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012. Dis-

tributed GraphLab: A framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endow-

ment 5, 8 (2012), 716–727.

[41] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. 2007. Challenges in parallel graph

processing. Parallel Processing Letters 17, 01 (2007), 5–20.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

https://graph500.org/
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html
https://www.intel.sg/content/www/xa/en/products/details/fpga/stratix/10.html
http://snap.stanford.edu/data

44:30 X. Chen et al.

[42] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, et al. 2015. A

survey and evaluation of FPGA high-level synthesis tools. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 35, 10 (2015), 1591–1604.

[43] Nimbix. 2020. Nimbix Cloud Computing. Retrieved March 8, 2022 from https://www.nimbix.net/.

[44] Eriko Nurvitadhi, Gabriel Weisz, Yu Wang, Skand Hurkat, Marie Nguyen, James C. Hoe, José F. Martínez, and Carlos

Guestrin. 2014. GraphGen: An FPGA framework for vertex-centric graph computation. In Proceedings of the 2014 IEEE

22nd Annual International Symposium on Field-Programmable Custom Computing Machines. IEEE, Los Alamitos, CA,

25–28.

[45] Tayo Oguntebi and Kunle Olukotun. 2016. GraphOps: A dataflow library for graph analytics acceleration. In Proceed-

ings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 111–117.

[46] Eva Ostertagová. 2012. Modelling using polynomial regression. Procedia Engineering 48 (2012), 500–506.

[47] Nadesh Ramanathan, John Wickerson, Felix Winterstein, and George A. Constantinides. 2016. A case for work-

stealing on FPGAs with OpenCL atomics. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. 48–53.

[48] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with interactive graph analytics and visualization.

In Proceedings of the 29th AAAI Conference on Artificial Intelligence.

[49] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. 2015. Chaos: Scale-out graph pro-

cessing from secondary storage. In Proceedings of the 25th Symposium on Operating Systems Principles. 410–424.

[50] Z. Ruan, T. He, B. Li, P. Zhou, and J. Cong. 2018. ST-Accel: A high-level programming platform for streaming applica-

tions on FPGA. In Proceedings of the 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM’18). IEEE, Los Alamitos, CA, 9–16.

[51] Kyle Rupnow, Yun Liang, Yinan Li, and Deming Chen. 2011. A study of high-level synthesis: Promises and challenges.

In Proceedings of the 2011 9th IEEE International Conference on ASIC. IEEE, Los Alamitos, CA, 1102–1105.

[52] Zhiyuan Shao, Ruoshi Li, Diqing Hu, Xiaofei Liao, and Hai Jin. 2019. Improving performance of graph processing on

FPGA-DRAM platform by two-level vertex caching. In Proceedings of the 2019 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. 320–329.

[53] Alan Jay Smith. 1982. Cache memories. ACM Computing Surveys 14, 3 (1982), 473–530.

[54] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding acceleration opportunities for data

center overheads at hyperscale. In Proceedings of the 25th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. 733–750.

[55] Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, and Weng-Fai Wong. 2021. ThundeRiNG: Generating multiple

independent random number sequences on FPGAs. In Proceedings of the ACM International Conference on Supercom-

puting. 115–126.

[56] Olivier Terzo, Karim Djemame, Alberto Scionti, and Clara Pezuela. 2019. Heterogeneous Computing Architectures: Chal-

lenges and Vision. CRC Press, Boca Raton, FL.

[57] Nils Voss, Pablo Quintana, Oskar Mencer, Wayne Luk, and Georgi Gaydadjiev. 2019. Memory mapping for multi-die

FPGAs. In Proceedings of the 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM’19). IEEE, Los Alamitos, CA, 78–86.

[58] Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An analytical performance model for OpenCL workloads on

flexible FPGAs. In Proceedings of the 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC’17). IEEE, Los

Alamitos, CA, 1–6.

[59] Zeke Wang, Bingsheng He, Wei Zhang, and Shunning Jiang. 2016. A performance analysis framework for optimiz-

ing OpenCL applications on FPGAs. In Proceedings of the 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA’16). IEEE, Los Alamitos, CA, 114–125.

[60] Mike Wissolik, Darren Zacher, Anthony Torza, and Brandon Da. 2017. Virtex UltraScale+ HBM FPGA: A Revolutionary

Increase in Memory Performance. White Paper. Xilinx.

[61] Xilinx. 2017. Vivado Design Suite— Vivado AXI Reference Guide. Retrieved March 8, 2022 from https://www.xilinx.

com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf.

[62] Xilinx. 2020. Large FPGA Methodology Guide. Retrieved March 8, 2022 from https://www.xilinx.com/support/

documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf.

[63] Xilinx. 2020. SDAccel: Enabling Hardware-Accelerated Software. Retrieved March 8, 2022 from https://www.xilinx.

com/products/design-tools/legacy-tools/sdaccel.html.

[64] Xilinx. 2020. UltraScale Architecture Memory Resources. Retrieved March 8, 2022 from https://www.xilinx.com/

support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf.

[65] Xilinx. 2020. Xilinx Adaptive Compute Cluster (XACC) Program. Retrieved March 8, 2022 from https://www.xilinx.

com/support/university/XUP-XACC.html.

[66] Xilinx. 2020. Xilinx Runtime Library (XRT). Retrieved March 8, 2022 from https://github.com/Xilinx/XRT.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

https://www.nimbix.net/
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
https://www.xilinx.com/products/design-tools/legacy-tools/sdaccel.html
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/university/XUP-XACC.html
https://github.com/Xilinx/XRT

ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS 44:31

[67] Xilinx. 2021. Alveo U280 Data Center Accelerator Card: User Guide. Retrieved March 8, 2022 from https://www.

mouser.com/pdfDocs/u280userguide.pdf.

[68] Yang Yang, Sanmukh R. Kuppannagari, and Viktor K. Prasanna. 2020. A high throughput parallel hash table acceler-

ator on HBM-enabled FPGAs. In Proceedings of the 2020 International Conference on Field-Programmable Technology

(ICFPT’20). IEEE, Los Alamitos, CA, 148–153.

[69] Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, and Bingsheng He. 2018. An efficient graph accelerator with parallel

data conflict management. In Proceedings of the 27th International Conference on Parallel Architectures and Compilation

Techniques. 1–12.

[70] Shijie Zhou, Charalampos Chelmis, and Viktor K. Prasanna. 2015. Optimizing memory performance for FPGA imple-

mentation of PageRank. In Proceedings of the 2015 International Conference on ReConFigurable Computing and FPGAs

(ReConFig’15). IEEE, Los Alamitos, CA, 1–6.

[71] Shijie Zhou, Charalampos Chelmis, and Viktor K. Prasanna. 2016. High-throughput and energy-efficient graph pro-

cessing on FPGA. In Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM’16). IEEE, Los Alamitos, CA, 103–110.

[72] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and Qing Wu. 2019. HitGraph: High-

throughput graph processing framework on FPGA. IEEE Transactions on Parallel and Distributed Systems 30, 10 (2019),

2249–2264.

[73] Shijie Zhou, Rajgopal Kannan, Hanqing Zeng, and Viktor K. Prasanna. 2018. An FPGA framework for edge-centric

graph processing. In Proceedings of the 15th ACM International Conference on Computing Frontiers. 69–77.

[74] Shijie Zhou and Viktor K. Prasanna. 2017. Accelerating graph analytics on CPU-FPGA heterogeneous platform. In

Proceedings of the 2017 29th International Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD’17). IEEE, Los Alamitos, CA, 137–144.

Received 27 August 2021; revised 3 November 2021; accepted 5 February 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 44. Pub. date: December 2022.

https://www.mouser.com/pdfDocs/u280userguide.pdf

