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Abstract
Graph Pattern Matching (GPM) is a critical task in a wide range
of graph analytics applications, such as social network analysis
and cybersecurity. Despite its importance, GPM remains challeng-
ing to accelerate due to its inherently irregular control flow and
heavy reliance on set operations, which dominate execution time
and introduce data dependencies that limit parallelism. While re-
cent GPM accelerators attempt to improve performance, they often
overlook the ordered nature of input data, resulting in redundant
computations and inefficient hardware utilization.

This paper presents X-SET, a GPM accelerator that overcomes
these limitations by introducing two key innovations. First, we
propose an Order-Aware Set Intersection Unit (SIU), which exploits
input ordering to reduce the hardware complexity of parallel set in-
tersection from O(𝑁 2) to O(𝑁 log𝑁 ), achieving high throughput
and significant area savings by avoiding unnecessary comparisons.
Second, we develop a barrier-free task scheduler that breaks tradi-
tional DFS scheduling constraints by enabling asynchronous, out-
of-order task execution across different levels of the GPM search
tree. X-SET is integrated into a RISC-V SoC, supporting end-to-end
acceleration. Extensive experimental results show that X-SET out-
performs state-of-the-art GPM accelerators, achieving 4.6×-142.9×
improvements in compute density, with a geometric mean of 13.7×,
and delivering 6.4× geometric mean and 42.9× maximum speedup
in end-to-end performance. X-SET is open-sourced at github1.

CCS Concepts
• Computer systems organization → Parallel architectures; •
Mathematics of computing → Graph enumeration.
∗Corresponding author
1https://github.com/CLab-HKUST-GZ/micro58-xset

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1573-0/25/10
https://doi.org/10.1145/3725843.3756112

Keywords
Graph pattern matching, Hardware acceleration, Set intersection,
Order-aware processing, Barrier-free scheduling, RISC-V

ACM Reference Format:
Chenxi Xu, Tianhui Shi, Shixuan Sun, Jidong Zhai, and Xinyu Chen. 2025.
X-SET: An Efficient Graph Pattern Matching Accelerator With Order-Aware
Parallel Intersection Units. In 58th IEEE/ACM International Symposium on
Microarchitecture (MICRO ’25), October 18–22, 2025, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3725843.3756112

1 Introduction
Graph Pattern Matching (GPM) is a fundamental operation in graph
analysis that identifies all subgraphs in a large data graph struc-
turally equivalent to a given query pattern. By discovering sig-
nificant patterns like cliques [1] and motifs [16], GPM uncovers
critical structural insights in complex networks. It is widely used
in domains such as social networks [16, 18, 22, 23], bioinformat-
ics [1, 2, 37, 53], cheminformatics [20, 28, 39], recommendation
systems [34, 52] and web spam detection [19, 29].

However, the combinatorial complexity of GPM poses significant
computational challenges. The need to explore a vast search space of
potential matches renders general-purpose CPUs [12, 13, 24, 36, 41,
42, 48, 50, 54] and GPUs [9, 24, 32, 41] inefficient for large-scale GPM
workloads. This performance gap has motivated the development of
specialized hardware accelerators [11, 14, 26, 31, 44, 49, 51]. While
these custom designs show promise, their performance remains
constrained by two primary bottlenecks: inefficient set intersection
and rigid task scheduling.

Many accelerators adopt a set-centric Depth-First Search (DFS)
paradigm [24, 35, 36], where set intersection is the fundamental
operation, consuming the majority of execution time [40] to per-
form the efficient pruning that gives DFS a key advantage over
Breadth-First Search (BFS) [10, 46, 47]. However, existing hardware
implementations for this operation are either inherently sequential
(merge-based) [11, 14, 45] or computationally redundant (systolic-
based) [15], limiting throughput. Furthermore, the DFS execution
model in prior work enforces strict synchronization barriers be-
tween levels of the search tree [11], causing frequent stalls and
underutilization of parallel hardware, particularly on graphs with
irregular degree distributions.
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Find (u1,u2,u3,u4)
(a) Example match with “diamond” Pattern

(b) Matching plan and restrictions

(c) Corresponding GPM algorithm (d) Example search tree for root vertex 𝑢1 = 4

Figure 1: Overview of graph pattern matching (GPM) and the set-centric DFS algorithm

Table 1: Theoretical comparison of set intersection architec-
tures, where 𝑁 denotes the number of elements processed
concurrently from two input sets.

Architecture Throughput Latency Resource
(#element/cycle) (#cycle) (#comparators)

Merge Queue [11] 1 O(1) O(1)
Systolic Array [15] 𝑁 O(𝑁 ) O(𝑁 2)
Our Work 𝑁 O(log𝑁 ) O(𝑁 log𝑁 )

To overcome these limitations, we propose X-SET, a scalable
hardware accelerator designed for high-throughput GPM. Our work
introduces two fundamental architectural innovations targeting the
primary bottlenecks in existing GPM pipelines. First, we introduce a
high-throughput, order-aware set intersection unit (SIU) built upon
a bitonic merger network. By transforming inputs into a bitonic
sequence, our design exploits inherent data ordering to eliminate
redundant comparisons. This enables highly parallel intersection
with O(𝑁 log𝑁 ) complexity and O(log𝑁 ) latency, granting X-SET
a significant performance advantage over conventional merge- and
systolic-based architectures, as quantified in Table 1. Second, to
overcome the synchronization barriers of traditional DFS acceler-
ators, we developed a barrier-free, out-of-order task scheduler. It
tracks data dependencies across the entire search tree and dynami-
cally dispatches any ready task to available SIUs, regardless of its
level. This ensures high hardware utilization on irregular workloads
and removes performance bottlenecks. We integrate X-SET into a
RISC-V SoC via the standard RoCC interface, enabling acceleration
of the full GPM workflow without software or compiler modifica-
tions and establishing it as a practical and powerful solution. This
paper makes the following key contributions:

• We design a high-throughput, order-aware set intersection unit
that leverages input order via a bitonic merger network to im-
prove performance and area efficiency over existing designs.

• We propose a dynamic, out-of-order scheduler that removes syn-
chronization barriers in DFS-based GPM, enabling fine-grained
parallelism by executing ready tasks from different levels of the
search tree concurrently.

• We integrate X-SET into a RISC-V SoC via the RoCC interface,
demonstrating a practical path to end-to-end hardware accelera-
tion without specialized compiler or software stacks.

• Our evaluations on real-world graphs show that X-SET achieves
up to 142.9× higher compute density (13.7× geometric mean)
and delivers up to 42.9× end-to-end speedup (6.4× average) over
state-of-the-art GPM accelerators.

2 Background and Motivation
2.1 GPM Definition
Graph Pattern Matching (GPM) is a fundamental task in graph
mining that involves identifying and enumerating all subgraphs
or embeddings within a larger data graph 𝐺 that are structurally
identical (isomorphic) to a given pattern graph 𝑃 . Formally, this task
requires finding a bijective mapping 𝑓 : 𝑉 (𝑃) → 𝑉 (𝐻 ) for a sub-
graph𝐻 ⊆ 𝐺 , such that the adjacency relationship between vertices
is preserved: (𝑢, 𝑣) ∈ 𝐸 (𝑃) ⇔ (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸 (𝐻 ), where 𝑉 (𝐺)
represents vertices of graph𝐺 and 𝐸 (𝐺) ⊆ 𝑉 (𝐺) ×𝑉 (𝐺) represents
its edge set. Figure 1a illustrates this concept by showing a data
graph𝐺 along with a target pattern graph 𝑃 (a Diamond structure).
Embeddings within 𝐺 that match pattern 𝑃 are highlighted with
vertices and edgesmarked in green: specifically (1, 2, 0, 3), (2, 3, 1, 4),
and (3, 4, 2, 5), each of which preserves the connectivity defined by
the pattern. While the general GPM problem is NP-complete, in
many practical applications, the interested patterns are fixed while
the data graph is dynamic [1, 2, 16]. For this scenario, which is
our main focus, the problem exhibits polynomial-time complexity,
making it amenable to hardware acceleration.

2.2 Set-Centric GPM Algorithm
Recent advancements in GPM systems have embraced a Set-Centric
DFS programming model [8, 36, 41, 42]. In this model, the system
methodically matches vertices in a defined sequence. The potential
matches for each vertex, known as its candidate set, are determined
by performing set operations (such as intersection and difference)
on the neighbor sets of vertices that have already been matched,
following the pattern’s connectivity.

Figure 1b illustrates the corresponding matching plan for the
“diamond” pattern depicted in Figure 1a, where 𝑣𝑖 ∈ 𝑉 (𝑃) denotes
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Figure 2: Set intersection unit design of previous works

the vertices of the pattern, 𝑢𝑖 ∈ 𝑉 (𝐺) represents the vertices to
be matched with 𝑣𝑖 , and 𝑁 (𝑢) ∈ 𝑉 (𝐺) indicates the neighbor set
of 𝑢. To avoid enumerating duplicate embeddings due to automor-
phisms, symmetry-breaking restrictions are incorporated into the
matching plan [35]. In the example pattern, 𝑣1 is symmetrical with
𝑣2, as is 𝑣3 with 𝑣4. Consequently, restrictions such as 𝑢1 > 𝑢2
and 𝑢3 > 𝑢4 are applied, as shown in Figure 1b. These constraints
effectively prevent embeddings like (2, 0, 4, 1) from being matched
twice in different permutations: (𝑢1, 𝑢2, 𝑢3, 𝑢4) = (2, 0, 4, 1) and
(𝑢1, 𝑢2, 𝑢3, 𝑢4) = (0, 2, 4, 1). This matching plan with its associated
restrictions can be directly translated into nested for loops exe-
cuted sequentially, as demonstrated in Figure 1c.

Figure 1d illustrates the search process starting with root vertex
𝑢1 = 4. At level 2, a neighbor𝑢2 of𝑢1 is chosen. The candidate𝑢2 = 5
is pruned by the symmetry-breaking constraint 𝑢2 < 𝑢1. At level 3,
the candidate sets for 𝑢3 and 𝑢4 are computed. As pattern vertices
𝑣3 and 𝑣4 are both connected to 𝑣1 and 𝑣2, their corresponding data
vertices, 𝑢3 and 𝑢4, must be selected from the intersection of 𝑁 (𝑢1)
and 𝑁 (𝑢2). For the branch 𝑢2 = 0, this intersection 𝑁 (4) ∩ 𝑁 (0) =
{2} is a singleton, so no valid pair (𝑢3, 𝑢4) with 𝑢4 < 𝑢3 can be
formed. For 𝑢2 = 2, the intersection 𝑁 (4) ∩ 𝑁 (2) = {0, 3} yields
the valid pair (𝑢3, 𝑢4) = (3, 0), resulting in the match (4, 2, 3, 0).
Similarly, for𝑢2 = 3, the intersection𝑁 (4)∩𝑁 (3) = {2, 5} produces
the pair (𝑢3, 𝑢4) = (5, 2) and the match (4, 3, 5, 2).

2.3 Challenges of GPM Accelerator Design
Efficient hardware acceleration of GPM is essential due to the com-
putational intensity and irregularity of memory access patterns in
graph analytics workloads. These properties often exceed the capa-
bilities of general-purpose processors [8, 11, 15]. However, effective
GPM acceleration involves addressing two critical algorithmic com-
ponents: intensive set intersection computations and efficient task
scheduling within a DFS-based search traversal.
Challenge #1: Design of Efficient Set Intersection Unit (SIU)
Set operations, including set intersection and set difference, are
repeatedly applied to prune candidate vertex sets during the DFS-
based traversal, accounting for the majority of GPM execution
time (up to 96.4%)[40]. While set difference is often implemented
via set intersection using the relation 𝐴 − 𝐵 = 𝐴 − (𝐴 ∩ 𝐵), an
efficient set intersection unit (SIU) that compares elements from two
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Figure 3: Previous scheduling strategies for GPM

sets to identify common elements is the key to GPM accelerators.
However, set intersection process inherently requires sequential
comparisons, as the presence of an element in the intersection set
depends on its presence in all input sets. Such data dependencies
limit opportunities for parallel execution, making it difficult to
customize parallel and efficient hardware architectures.

Current designs for SIUs face challenges in optimizing paral-
lelism without sacrificing hardware efficiency. Figure 2 visualizes
the computation in existing SIU designs with two example input
sequences. Most existing works [11, 14, 45] adopt a simple merge-
based SIU (shown in Figure 2a), where elements from two sets
({1, 2, 4, 5} and {0, 2, 3, 4}) are compared sequentially through a sin-
gle comparison unit. This approach processes one comparison at
a time, as shown in the time sequence of operations. While archi-
tecturally simple, it results in limited throughput (one element per
cycle) due to its inherently sequential nature.

To increase parallelism, DIMMining [15] adopts a systolic merge
array that processes segments of input sets concurrently by structur-
ing all possible element comparisons in a systolic array (Figure 2b
for segment length 𝑁 = 4). Although this design boosts through-
put and scalability, it performs an exhaustive all-to-all comparison,
disregarding the inherent order of the input segments. This leads
to considerable redundancy, as illustrated by unnecessary com-
parisons (e.g., if 2 from sequence B is already less than 3 from
sequence A, comparing 1 from B with 3 is superfluous). As a result,
this method requires 𝑁 2 comparators for sequences of length 𝑁 ,
escalating hardware complexity and resource usage.
Challenge #2: Efficient Task Scheduling for SIUs
While DFS-based scheduling effectively controls memory usage,
it presents significant challenges in leveraging fine-grained par-
allelism across multiple SIUs due to its irregular memory access
patterns and complex control flow. To exploit search-tree-level
parallelism, search trees with different root vertices are usually
distributed to available processing elements (PEs). However, most
existing implementations [14, 15, 42, 45] only equip a single SIU
in a PE and execute tasks sequentially, as illustrated in Figure 3b,
where the search tree of root vertex 0 (Figure 3a) is executed with
a single SIU. As a result, parallelism within the search tree remains
unexploited, and the entire PE sits idle while the sole SIU awaits
outstanding memory requests, leading to suboptimal utilization.

Although various strategies have been proposed to exploit the
fine-grained subtree-level parallelism and achieve better utiliza-
tion of multiple SIUs, their effectiveness remains constrained. The
pseudo-DFS scheduling approach introduced by FINGERS [11] en-
ables concurrent execution of sibling tasks (those at the same level
in the search tree) within predefined execution windows, where the
window size determines the maximum number of tasks that can
be executed in parallel. Nevertheless, this approach requires that
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all tasks in the current execution window must complete before
tasks in the next window can begin, which introduces additional
synchronization barriers.

Figure 3c illustrates this scheduling with an execution window
size of two. The task ➅ must wait for both tasks ➃ and ➄ to finish
even when task ➄ completes early, leaving SIU 1 idle. Furthermore,
pseudo-DFS scheduling prohibits the simultaneous execution of
tasks from different hierarchical levels within a single execution
window. This further reduces SIU utilization when the execution
window is under-saturated. For instance, while task ➅ is executing,
SIU 1 remains completely idle, missing the opportunity to process
task ➂ concurrently.

Shogun [49] builds on FINGERS [11] by introducing an incremen-
tal task scheduler for out-of-order execution to reduce inter-depth
barriers. However, it retains low-throughput, merge-based SIUs,
requiring many SIUs and task dividers, which increases hardware
complexity and impacts cache locality because of fine-grained in-
put partitioning. To mitigate this, Shogun’s scheduler incorporates
centralized control and a locality-aware mode that adds synchro-
nization barriers, essentially restricting parallelism.

3 The Proposed Solution
To address the challenges in GPM accelerator design, we propose
an innovative hardware architecture integrated with advanced set
operation mechanisms and a barrier-free scheduling approach. We
first introduce Order-Aware Parallel Set Intersection Unit to im-
prove the efficiency of computing intersections by exploiting the in-
herent order within input segments. Then, we propose a barrier-free
scheduling method that dynamically manages task dependencies,
thereby enhancing parallelism and utilization.

3.1 Order-Aware Parallel Set Intersection Unit
We propose a novel Order-Aware Parallel Set Intersection Unit that
leverages the inherent order of input data to minimize compu-
tational redundancy and hardware complexity. This approach is
inspired by two key insights related to the order of sequences.

Insight 1: we can achieve linear complexity for computing
set intersection with ordered sequences. This realization comes
from observing that the Simple Merge Queue (shown in Figure 2a)
closely resembles the merge step of classical merge sort. Formally,
let 𝑆 be a sequence containing all elements from sets 𝐴 and 𝐵,
where each element 𝑆𝑖 = (𝑥𝑖 , 𝐹𝑖 ) consists of a value 𝑥𝑖 and a flag
𝐹𝑖 ∈ {𝐿, 𝑅} indicating whether the element belongs to set 𝐴 (when
𝐹𝑖 = 𝐿) or set 𝐵 (when 𝐹𝑖 = 𝑅). We define a total ordering on 𝑆 such
that 𝑆𝑖 < 𝑆 𝑗 ⇔ 𝑥𝑖 < 𝑥 𝑗 or (𝑥𝑖 = 𝑥 𝑗 and 𝐹𝑖 = 𝐿). When 𝑆 is sorted
according to this ordering, set intersection can be computed by
examining adjacent elements: 𝑥𝑖 ∈ 𝐴∩𝐵 ⇔ 𝑥𝑖 = 𝑥𝑖+1 and 𝐹𝑖 ≠ 𝐹𝑖+1
and for difference 𝑥𝑖 ∈ 𝐴−𝐵 ⇔ 𝐹𝑖 = 𝐿 and (𝑥𝑖 ≠ 𝑥𝑖+1 or 𝐹𝑖+1 = 𝐿).
This enables us to use linear scan to compute the intersection and
difference and those comparisons can be executed in parallel as
there are no data dependencies between them.

Insight 2: we can achieve O(𝑁 log𝑁 ) hardware complexity
for sorting two ordered sets in parallel. Leveraging the inherent
order of neighbor sets allows for a highly efficient merging pro-
cess. The key maneuver involves concatenating one set with the
reverse of the other, strategically creating a bitonic sequence, which
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Figure 4: Order-aware SIU

is a sequence that first increases and then decreases. This special
structure is perfectly suited for sorting by a Bitonic Merger [33].
The power of the merger lies in its recursive strategy: it repeat-
edly splits a bitonic sequence of length 2𝐿 into two smaller bitonic
halves, using 𝐿 comparators to guarantee all elements in the left
half are smaller than those in the right. This elegant method sorts
the sequence with only O(𝑁 log𝑁 ) comparators and achieves a
latency of O(log𝑁 ) cycles [38].

Our Order-Aware SIU architecture is engineered to exploit this
insight. The process begins by transforming the input sets into a
bitonic sequence. This sequence is then channeled into the Bitonic
Merger, which employs a parallel compare-and-swap mechanism
for rapid sorting. In the final stage, the set intersection and differ-
ence are resolved through parallel comparisons between adjacent
elements in the perfectly sorted sequence. To crystallize this con-
cept, consider the example in Figure 4 with sets 𝐴 = {0, 2, 3, 4} and
𝐵 = {1, 2, 4, 5}. Denoting an element 𝑥𝑖 with its origin flag 𝐹𝑖 as 𝑥𝐹𝑖𝑖 ,
we form the bitonic sequence 𝐶1 = (0𝐿, 2𝐿, 3𝐿, 4𝐿, 5𝑅, 4𝑅, 2𝑅, 1𝑅) by
concatenating 𝐴 with a reversed 𝐵. The Bitonic Merger then trans-
forms𝐶1 into the sorted sequence 𝑆 = (0𝐿, 1𝑅, 2𝐿, 2𝑅, 3𝐿, 4𝐿, 4𝑅, 5𝑅).
From this output, parallel adjacent comparisons cleanly extract the
intersection 𝐴 ∩ 𝐵 = {2, 4} and the difference 𝐴 − 𝐵 = {0, 3}.

Our Order-Aware SIU significantly reduces the number of com-
parators and eliminates redundant operations in systolic merge
array [15]. As a result, the Order-Aware SIU achieves O(𝑁 log𝑁 )
hardware complexity, O(log𝑁 ) latency, for 𝑁 elements per cycle
throughput, substantially outperforming traditional merger and
systolic array in both efficiency and scalability.

3.2 Barrier-Free Task Scheduler
To maximize parallelism during DFS-based GPM [36], we introduce
a barrier-free task scheduler that eliminates global synchroniza-
tion constraints and enables dynamic, fine-grained task scheduling
across SIUs. Unlike previous designs [11, 14] that impose level-wise
barriers, forcing all sibling tasks to complete before progressing,
our approach dynamically dispatches ready tasks based on actual
data dependencies encoded in the task tree. The key insight of
our method is that the search tree structure naturally encodes
task dependencies, allowing tasks to execute as soon as their
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Task 0: v1 in V
S[0] <- load G[v1], filter=v1

Task 1: v2 in S[0]
S[1] <- set_int S[0], G[v2]

Task 2: v3 in S[1]
R[0] <- set_diff S[1], G[v3],

filter=v3, count_only
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Figure 5: X-SET system overview

0

1 2 3

4 5 6 7 8 9

0

1 2 3

4 5 6 7 8 9

0

1 2 3

4 5 6 7 8 9

0 1 4

2 5 6

3 7

8

9

Time

0

1

SIU Finished Task

Tasks ready to be executed

Tasks waiting for dependency

Task 2
Finished

Task 1
Finished

(a) Parallelizable tasks with execution progress

(b) Executing timeline (c) Legend for task tree

Figure 6: Barrier-free scheduling for GPM

parent task completes, without waiting for the execution of other
branches to reach the same depth.

As illustrated in Figure 6a, GPM computation can be conceptual-
ized as a hierarchical task tree where each node represents a specific
set operation. Our barrier-free scheduling approach dynamically
manages task execution based on dependency resolution rather
than rigid synchronization barriers. The figure demonstrates how
tasks transition from waiting (red) to ready (green) states as their
dependencies are satisfied. Following the completion of the root
task, tasks ➀, ➁, and ➂ become immediately eligible for parallel
execution. As these tasks complete, their respective child tasks be-
come available for processing, enabling cross-level parallelization
without artificial synchronization points.

Figure 6b presents the execution timeline for the same task tree of
our approach, with time progression on the horizontal axis and SIU
execution slots on the vertical axis. This visualization highlights
the efficiency gains compared to traditional methods shown in
Figure 3. For instance,Tasks ➄ and ➅ begin immediately after task
➁ completes, without waiting for other same-level tasks. Similarly,
task ➃ starts promptly after task ➀ finishes.

Our barrier-free scheduling algorithm continuously monitors
task completion and dependency satisfaction, adapting to the actual
computation progress rather than enforcing rigid synchronization
points. This adaptive approach is particularly beneficial for GPM
workloads characterized by irregular computation patterns and
varying task execution times.

4 X-SET Overview
4.1 System Architecture
Figure 5 illustrates the system architecture of X-SET, which is built
on a Chipyard-generated SoC [4], where each PE is implemented

as a RoCC accelerator alongside a Rocket core [5]. This design
supports instruction extensions for efficient software-hardware
co-design, managing configuration, task execution, and result col-
lection. As illustrated in Figure 5b, each PE contains specialized
components. A Controller interfaces with the RISC-V core via RoCC
instructions to manage PE states. Multiple Order-Aware SIUs exe-
cute set operations, leveraging data order to optimize performance
as elaborated in Section 5. A Barrier-Free Scheduler, detailed in
Section 6, dynamically dispatches tasks from the task tree to maxi-
mize parallelism, while a Private Cache stores the data graph and
intermediate results for access by both the SIUs and the scheduler.
All data resides in DRAM and is accessed through a shared cache.

4.2 Execution Flow
X-SET provides an integrated software-hardware flow for GPM
acceleration from generating matching plans to execution on hard-
ware. Figure 5a depicts the workflow with X-SET. The GPM process
begins with the generation of a GPM plan using a system such
as GraphPi [42] (➀). This plan is subsequently transformed into
an executable task list (➁). Each task within this list is designed
to identify a specific vertex of the pattern graph and perform as-
sociated set operations, including set intersection (set_int), set
difference (set_diff), and data loading from global memory (load).
Additionally, each task determines the candidate set for initiating
subsequent tasks in the next processing level. Notably, all set op-
erations incorporate functionalities for output filtering based on a
defined upper limit and a count-only mode, specifically optimized
for pattern counting workloads. Following these preprocessing
stages, the RISC-V CPU core initiates the offloading of GPM exe-
cution to a dedicated PE through customized RoCC instructions.
This offloading process consists of several key steps: first, the data
graph and the prepared task list are configured within the PE (➂);
second, execution is initiated with specification of the maximum
vertex to be processed (➃); finally, the RISC-V core polls the PE to
retrieve the results (➄).

The corresponding CPU code with RoCC ISA extensions [5, 21]
is shown in Figure 7a, where custom instructions (which are bolded
and prefixed with xset_) are annotated with numbers correspond-
ing to each stage in the workflow. Integration with RISC-V cores
enables flexible support for advanced result collection logic, al-
lowing X-SET to handle a wide range of GPM workloads, includ-
ing matching plans enhanced by Intersection Expression Pruning
(IEP) [41, 42]. For instance, while triangle counting (3CF, Figure 7b)
involves straightforward accumulation, the diamond pattern (DIA,
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total += R[0] *

  (R[0] - 1) / 2;

total += (R[0] - 1) * (R[1] - 1) * (R[2] - 1)

           - R[3] * (R[0] + R[1] + R[2] - 5);

xset_setup_addr(addr_arr);
xset_setup_len(len_arr);
xset_setup_plan(task_list);
xset_launch(N_vertices);

int total = 0;
xset_res R;
while(xset_poll_res(&R))
  { total += R[0]; }

3

4

5

total += R[0];

(a) Example CPU code

(b) Result collection for “3CF”

(c) Result collection for “DIA”

(d) Result collection for “TRI6”

Figure 7: Example CPU code for offloading GPM to X-SET
with RoCC extensions and supported IEP-enabled result col-
lection for different patterns

Figure 7c) requires more sophisticated result collection. In this case,
both 𝑣3 and 𝑣4 must connect to 𝑣1 and 𝑣2, and the result is computed
as |𝑆 | = |{(𝑣3, 𝑣4) | 𝑣3, 𝑣4 ∈ 𝑁 (𝑣1) ∩ 𝑁 (𝑣2), 𝑣3 < 𝑣4}|, which simpli-
fies to𝐴(𝐴− 1)/2, where𝐴 = |𝑁 (𝑣1) ∩𝑁 (𝑣2) |. Even more complex
logic, including arbitrary IEP expressions, can be easily supported
by X-SET, as demonstrated by the pattern TRI6 in Figure 7d with
the result collection expression introduced by GraphSet [41].

Another key advantage of integrating a RISC-V core with an X-
SET PE is the ability to handle patterns with arbitrary size. For com-
plex patterns with a vertex count beyond the hardware scheduler’s
limit, the CPU executes the initial stages of the GPM plan to gener-
ate and refine candidate sets, which are then delegated to the PEs
for accelerated analysis of the remaining stages. This tight integra-
tion ensures greater flexibility in handling diverse GPM workloads
compared to conventional hardware accelerators [11, 14, 15, 49].

5 Order-Aware Set Intersection Unit
The Order-Aware Set Intersection Unit (SIU) forms the core of our
proposed architecture, designed to efficiently process set intersec-
tion and difference on ordered neighbor sets of arbitrary length.
In this section, we provide a comprehensive overview of its micro-
architecture, followed by a detailed explanation of how to exploit
the internal order of inputs to achieve efficient processing.

5.1 Micro-Architecture Overview
Figure 8 illustrates the micro-architecture of our proposed Order-
Aware SIU. The architecture comprises four primary components
supporting the core pipeline: control unit (Ctrl), memory requester
(Mem), input filter, and buffers for both input and output data.

The Control unit orchestrates the pipeline by issuing memory
requests through the Memory Request module (➀) to fetch neigh-
bor sets. The Input Filter (➂), configured by the Control unit (➁),
performs initial filtering to reduce computation by eliminating ver-
tices and breaking pattern symmetry—a crucial factor for GPM effi-
ciency [35]. Filtered data is then segmented and fed into 𝑁 parallel
input FIFOs (➃) in round-robin, where the 𝑘-th FIFO stores ele-
ments 𝑘, 𝑘 +𝑁, . . .. This fully pipelined approach supports arbitrary
set lengths. After processing by the core pipeline, results are aligned
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Figure 8: Architecture of order-aware SIU, with 𝑁 = 4

into segments by the Output Buffer (➄) for efficient write-back via
the Memory Request module. 𝑁 represents the pre-configured seg-
ment length, balancing both throughput and hardware complexity.
For clarity, we use 𝑁 = 4 in this section, while 𝑁 = 8 is used in
evaluation to match DRAM access granularity.

5.2 Core Processing Pipeline
The core of our Order-Aware SIU is a novel, fully-pipelined stream-
ing architecture designed to process sets of arbitrary length. Instead
of directly adopting a standard bitonic sorter, we leverage a bitonic
merger network [38], which uses MIN and CAS stages to merge
two input sets into a single sorted stream in segments. This stream
is then processed by a parallel Merge stage for adjacent vertex
comparison and BitmapCSR updates, followed by a Compact stage
to produce a dense output. This segmented, streaming approach
ensures scalability to arbitrary set sizes.

BitmapCSR is a hybrid format where each 32-bit element repre-
sents multiple vertices. This is achieved by dividing the element
into an 𝑏-bit bitmap (𝑣) and a 32 − 𝑏-bit index (𝑘). For a given ver-
tex 𝑥 , the index is set to 𝑘 = 𝑥/𝑏, and the corresponding bit in
the bitmap is set to 1 at position 𝑥 (mod 𝑏). This allows a single
element to represent up to 𝑏 distinct vertices, leading to optimized
storage memory usage and intra-element parallelism.

Figure 9 illustrates the detailed dataflow of the core pipeline
when processing the intersection of two sets 𝐴 = {0, 1, 3, 4, 5, 6, 7}
and 𝐵 = {0, 2, 3, 6, 7} with segment length 𝑁 = 4. Note that the
following mentioned comparisons are all based on the index of the
BitmapCSR element, which further reduces the width to compare
for comparators and reduces hardware area.

5.3 Exploiting Order in Input Sets
The order inherent in the input sets is exploited by the Bitonic
Merge network to efficiently sort two ascending input sets, enabling
subsequent parallel set operations on sorted elements.

5.3.1 MIN Stage. The first stage of the bitonic merge network is
the MIN stage, designed to extract the smallest 𝑁 elements from
the two sorted input sets and form output as a bitonic segment,
preserving order information of original inputs. The MIN stage
compares the top element of the 𝑖-th (1 ≤ 𝑖 ≤ 𝑁 ) FIFO of the first
input set with the top element of the (𝑁 − 𝑖 + 1)-th FIFO of the
second input set and outputs the smaller one as the 𝑖-th output
element. Formally, the output segment is𝐶𝑖 = min{𝐴𝑖 , 𝐵𝑁−𝑖+1} for
two input segment 𝐴, 𝐵. The resulting segment is bitonic because
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Figure 9: Example of order-aware SIU processing intersection
of 𝐴 = {0, 1, 3, 4, 5, 6, 7} (top) and 𝐵 = {0, 2, 3, 6, 7} (right)

MIN stage always extracts consecutive elements from inputs and
appends them in reversed order.

As shown in Figure 9, in cycle 0, the MIN stage compares 0 from
𝐴 with 6 from 𝐵 and outputs 0, compares 1 from 𝐴 with 3 from
𝐵 and outputs 1, and so on. Finally, (0, 1, 2, 0) are selected as the
smallest-4 elements and are popped out from the input buffer. Other
elements remain in the input buffer, and new elements become the
top elements. Because the input data are pushed to FIFOs in a round-
robin manner, the input segment of𝐴 for cycle 1 becomes (5, 6, 3, 4)
and that of 𝐵 becomes (6, 3,×, 7), where × represents an empty
element and is treated as larger than any valid element. The output
of the MIN stage in cycle 0 is (0, 1, 2, 0), which is bitonic because
it increases first then decreases. This property enables efficient
processing in the following CAS stage.

5.3.2 CAS Stage. The second stage is the CAS (compare and swap)
stage, designed to split one bitonic segment into two halves of
bitonic segments with the same length, where all elements of one
half are smaller than those of the other half. When the subsegments
contain only one element each, the whole segment is fully sorted.
For the CAS stage processing 𝐿 elements, it uses 𝐿/2 comparators
to perform CAS operations on the 𝑖-th and (𝑖 + 𝐿/2)-th elements
(𝑖 ∈ {1, · · · , 𝐿/2}) in parallel.

As shown in Figure 9, at cycle 0, the first CAS stage uses 2 com-
parators to split the bitonic segment (0, 1, 2, 0) into two bitonic
sub-segments (0, 0), (2, 1). Next, two CAS stages with 1 comparator
each are recursively applied to the two sub-segments, generating
the final sorted segment (0, 0, 1, 2). The utilization of bitonic prop-
erties across multiple CAS stages enables efficient sorting with only
𝑁 log2 𝑁 comparators and log𝑁 cycles.

Furthermore, the standard CAS operations are enhanced with
a flag𝑚𝑖 that indicates whether the 𝑖-th element matches another
element during sorting. Specifically, when a CAS unit is applied to
elements 𝑥𝑖 and 𝑥 𝑗 , their corresponding flags are updated according
to the formula 𝑚′

𝑖
= 𝑚𝑖 ∨ (𝑥𝑖 = 𝑥 𝑗 ),𝑚′

𝑗
= 𝑚 𝑗 ∨ (𝑥𝑖 = 𝑥 𝑗 ). This

flagging mechanism efficiently eliminates the need for 𝑁 additional
comparators in the final merge stage.

5.4 Parallel Set Operation on Sorted Segments
5.4.1 Merge Stage. After sorting, the Merge stage efficiently per-
forms set operations on the sorted segments by leveraging the
match flag from the CAS stage. When an element from the first
input set has its match flag set, it is guaranteed to match with the
next element in the sorted segments. This optimization is signifi-
cant as it replaces the 𝑁 comparators with 𝑁 1-bit multiplexers for
final adjacent checking, substantially reducing hardware costs.

A key exception in this process is the comparison between the
last element of the current segment and the first element of the next,
which the match flag does not support. To address this, a single
register preserves the last element for this subsequent comparison.
As shown in Figure 9, element 2 from cycle 0 is retained for com-
parison with element 3 at cycle 1, and element 5 from cycle 1 is
held for element 6 at cycle 2. This mechanism ensures continuous
and accurate set operations across segment boundaries.

Additionally, the Merge stage is designed to handle bitmap up-
dates for the BitmapCSR format. If adjacent elements have equal
indices, the Merge stage applies a bitwise AND to their bitmaps
for intersection, or a bitwise AND between the bitmap of the first
element and the negation of the bitmap of the second for difference.

5.4.2 Compact Stage. Finally, a compact stage removes any empty
elements from the output of the Merge stage and generates con-
secutive output data to be aligned by the circular output buffer.
Our compact stage is implemented as an efficient binary-tree-like
recursive reducer, with additional accumulation functions for ele-
ment count and segment length. Compared with the systolic merge
array, which is constrained by the timing of the systolic array and
requires 𝑁 2/2 hardware resources and 𝑁 cycles of latency for the
final compact triangle, our compact stage only requires log2 𝑁 cy-
cles of latency and 𝑁 log2 𝑁 hardware resources, making it more
efficient and scalable for the compact operation.

6 Barrier-Free GPM Scheduling
To fully exploit parallelismwithin the DFS tree for GPM, we propose
a barrier-free scheduler that eliminates traditional synchronization
constraints while dynamically managing parallel tasks. The pro-
posed barrier-free scheduler architecture, illustrated in Figure 10,
comprises hierarchical structures to manage data dependencies of
tasks and key components to execute tasks in parallel.

6.1 Task Management and Spawning
At the core of our scheduler is the Task Tree, shown in Figure 10a,
which implements a hierarchical organization of tasks arranged
in layers from 0 to N. Layer 0 serves as the root of the tree, with
each subsequent layer containing one or more Task Sets. This hier-
archical structure enables efficient management of complex task
dependencies and parallel execution. The Task Set is the fundamen-
tal component of dependency management within the task tree.
Each Task Set is assigned to one parent task and represents all its
subtasks. When a task completes its execution with a non-empty
candidate set, an available Task Set is allocated to it and configured
to spawn tasks with the vertices in the candidate set. This mech-
anism ensures proper task succession and dependency resolution
throughout the execution process. As illustrated in Figure 10b, each
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Figure 10: Key structures and processes of barrier-free scheduler

Task Set contains several key components. A valid bit (V) indicates
whether this task set can be allocated. The Task Frame (Frame)
tracks information of intermediate sets and vertices. For efficient
task creation, the Task Set includes a Fast Spawning Register (FSR)
and a CBuf index (CBuf). Additionally, each Task Set maintains a
list of subtasks (v0-v3) with their respective status, vertex, and
sub-task set ID stored for tracking purposes.

The Candidate Buffer (CBuf), depicted in Figure 10c, plays a
crucial role in the task spawning process. It consists of multiple
items, each comprising a valid bit (V), address and length infor-
mation of the candidate set, and a ping-pong buffer for storing
segments of the candidate set. When a Task Set is allocated for a
parent task, an available CBuf item is also assigned and configured
with the candidate set information. To optimize performance, the
CBuf continuously fetches segments to empty ping-pong buffer
slots, effectively overlapping the latency of data fetching with task
spawning operations. For symmetric breaking in Graph Pattern
Matching (GPM), the system employs an upper limit filter (Flt),
which functions similarly to the one in Order-Aware SIU. Further-
more, to leverage the BitmapCSR format during task spawning,
the Fast Spawning Register (FSR) stores one BitmapCSR element
fetched from CBuf. The system first checks the FSR for available
vertices to spawn tasks, then unsets the corresponding bit in its
bitmap after spawning. Only when the FSR’s bitmap becomes empty
does the CBuf receive requests for subsequent elements, ensuring
efficient resource utilization and task management.

6.2 Task Issuing and Execution
The scheduler employs a sophisticated Task Issuing Policy, shown
in Figure 10d, which exploits the parallelism inherent in the task
tree structure while maintaining cache locality. At the Task Set
level, each Task Set selects one of its ready subtasks for issuing
in a round-robin manner (➀). At the Layer level, further round-
robin selection is made among valid task sets (➁). This round-robin
policy applied at these two levels maintains cache locality, ensuring
that tasks with similar data dependencies are executed in close
proximity. However, at the task tree level, a Depth-First policy is
used for final selection to minimize the memory footprint.

The Operation Dispatcher, depicted in Figure 10e, accepts the
task selected by the task tree and transforms it into set operations
before dispatching them to available SIUs. As shown in Figure 10e,
the position of issued task (1,0,0) indicates it is from the second

layer. The dispatcher reads the task information of correspond-
ing layer, which is R[0] <- set_int S0, G[v1], filter=v1,
count_only. It means that the task contains one set intersection
operation with intermediate set S0 and global neighbors set of v1,
with v1 as filter and counting the result elements only. The infor-
mation of S0 is obtained from the frame with the task, and the
information of the neighbor set is fetched from memory through
the cache. Finally, the generated operation set_int 0x1000, 32,
0x2000, 16, 3, flt, cnt(➃) is pushed to the operations queue

(➄), waiting for available SIUs to fetch and execute in parallel(➅).
The execution results are pushed to the Result Queue (➆) and then
committed back to update the Task Tree (➇). This isolated oper-
ations dispatching and result collection allows the scheduler to
execute tasks asynchronously, eliminating the need for synchro-
nization barriers that typically hinder performance in GPM systems.

By systematically removing synchronization barriers, our sched-
uler significantly reduces idle time, improves the overall utilization
of SIUs, and maximizes throughput for GPM operations. Our archi-
tecture design principles prioritize continuous computation flow,
efficient resource utilization, and minimal waiting periods, mak-
ing it particularly well-suited for complex GPM workloads that
traditionally suffer from synchronization overhead.

7 Evaluation
7.1 Experimental Setup
7.1.1 Implementation and Configurations. Table 2 summarizes the
system configurations for evaluation. We construct a detailed sim-
ulation framework consisting of the following components: (1)
We build a cycle-accurate System-C-based event-driven simulator
to reflect the key latency of hardware modules. (2) To model re-
alistic memory performance, we integrate DRAMSys 5.0 [43], a
cycle-accurate DRAM simulator. (3) We use CACTI [7] to model
the latency, power, and area of cache in 32nm process node. (4) We
implement the hardware design of our accelerator using Chisel [6]
within the Chipyard [4] framework and synthesize the generated
Verilog RTL using Synopsys Design Compiler under TSMC 28nm
technology to obtain area and power metrics at 1GHz. We maintain
similar configurations as in baselines to enable fair comparisons.

To facilitate performance evaluation on large, real-world data
graphs, we employ a cycle-accurate SystemC-based simulator. This
approach is necessary because RTL simulation is prohibitively slow
for such workloads. Our simulator is approximately 200 times faster
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Table 2: System configuration

PE
#PE 16
Order-Aware SIU 4 SIUs per PE, Input width 8
Scheduler TaskSet width 4, #TaskSet 96

Memory subsystem
Private Cache 32KB per PE, LRU, 4 Banks, 4 Ways
Shared Cache 4MB total, LRU, 8 Banks, 8 Ways
Main Memory 16GB, 4 Channel, DDR4-2400 (76.84GB/s)
DDR Timing (CL-tRCD-tRP) 16-16-16

Table 3: Graph datasets used in evaluation

Dataset # Nodes # Edges Avg Deg. Max Deg. Skew
p2p-Gnutella04 (PP) 1.09E+4 4.00E+4 3.68 103 2.15

WikiVote (WV) 7.12E+3 1.04E+5 14.57 1065 5.14
AstroPh (AS) 1.88E+4 1.98E+5 10.55 504 3.85

MiCo (MI) 9.66E+4 1.08E+6 11.18 936 8.48
Youtube (YT) 1.13E+6 2.99E+6 2.63 28754 232
Patents (PA) 3.77E+6 1.65E+7 4.38 793 6.75

LiveJournal (LJ) 4.85E+6 6.90E+7 14.23 20333 30.9

3CF 4CF 5CF TT CYC DIA 3MF
Figure 11: Patterns used in evaluation

than the RTL equivalent and its fidelity is ensured through cross-
validation against the RTL simulation using small test cases. While
FPGA-accelerated RTL simulation, such as FireSim [27], presents a
promising alternative, its integration remains future work.

7.1.2 Datasets and Benchmarks. We select widely adopted, real-
world graph datasets and patterns that are excessively used in
evaluating the performance of GPM systems in prior works. Graph
datasets are listed in Table 3, where “MiCo” dataset is from [17],
while others are from [30]. The skew column represents the mea-
sure of the asymmetry of degree distribution [25]. Figure 11 shows
graph patterns used in the evaluation, which includes triangle (3CF),
4-clique (4CF), 5-clique (5CF), tailed-triangle (TT), 4-cycle (CYC), dia-
mond (DIA). We also use 3-motif finding (3MF) to demonstrate our
capability for multi-pattern matching.

7.1.3 Baselines. We compare X-SET against state-of-the-art CPU,
GPU and accelerator-based GPM systems, respectively.

For CPU baselines, we compare X-SET against GraphPi [42],
which effectively eliminates redundant computations, and Graph-
Set [41], which employs set-based transformations for mining plan
optimization. For a fair comparison, we evaluated the open-source
implementations of both baselines on a 96-core AMD EPYC 9654
processor with 1.5TB of DDR5-4800 memory and 384 MB shared
cache. The max memory bandwidth is 921.6 GB/s. All cores were
utilized at 3.55 GHz, with hyper-threading disabled to prevent per-
formance degradation, consistent with the original studies [41, 42].

For the GPU baseline, we compare our approach against GLU-
MIN [9], which uses fast bitwise operations on dynamically gener-
ated Look-Up Tables. It is evaluated on an NVIDIA RTX 6000 Ada
GPU with 48GB GDDR6 memory and 960 GB/s bandwidth.
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Figure 12: Speedup of X-SET compared to software baselines

For GPM accelerators, we compare with FlexMiner [14], FIN-
GERS [11], and Shogun [49]. These accelerators feature similar
memory configurations, including 32KB private cache per PE, 4MB
shared cache, and 4-channel DDR4-2666 memory providing 85GB/s
maximum bandwidth, which is slightly larger than ours. FlexMiner
deploys 40 PEs, while FINGERS and Shogun utilize 20 PEs to utilize
available bandwidth. Performance data for FlexMiner is sourced
directly from its original paper, while results for FINGERS and
Shogun are computed based on their reported relative speedup
over FlexMiner. We also compare our order-aware SIU with Sys-
tolic Merge Array in DIMMining [15] and Merge Queue in FIN-
GERS [11]. We exclude DIMMining from end-to-end comparisons
due to its near-memory architecture (based on DIMM modules),
which operates under fundamentally different memory and band-
width assumptions than other in-SoC accelerators.

7.2 Overall Performance Comparison
7.2.1 Comparison with software baselines. Figure 12 shows perfor-
mance comparison with three software baselines across six real-
world graphs and various pattern queries. All speedups are plotted
on a logarithmic scale. As detailed in Figure 12a, X-SET significantly
outperforms Graph-Pi [42], achieving speedups up to 494.26× (on
5CF) and geometric mean speedups from 4.9× (PA) to 43.9× (AS),
due to its order-aware set operations and barrier-free scheduling.
Against GraphSet [41], it maintains a competitive geometric mean
speedup of 2.5× (LJ) to 15.9× (PP) (Figure 12b). The PA benchmark
exhibits a modest speedup compared to GraphPi for two primary
reasons. First, the graph’s large working set exceeds shared cache
capacity. Second, the high sparsity of the graph, as detailed in Table
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Figure 13: Speedup compared with FlexMiner, FINGERS, and Shogun

3, diminishes the throughput advantages of our specialized SIU
hardware.

Figure 12c reveals that X-SET outperforms the GPU-based sys-
tem GLUMIN [9]. The efficiency of our specialized hardware is
highlighted by the fact that X-SET achieves a 1.05× geometric
mean speedup across all benchmarks while utilizing less
than 10% of the memory bandwidth of the GPU.We observe
a trend where the performance advantage of X-SET diminishes
for larger graphs. This is because larger workloads allow the GPU
to more effectively saturate its massively parallel cores and lever-
age its high-bandwidth memory. It should also be noted that for
the MI and PA graphs, the speedup is less pronounced. This out-
come is explained by that the maximum vertex degrees in these
specific graphs fall below the limit for GLUMIN’s warp-level LUT
generation, thereby allowing for enhanced parallelism on the GPU.

In summary, X-SET substantially outperforms state-of-the-art
CPU and GPU-based systems by 43.9× and 1.05× correspondingly,
while using less than 10% memory bandwidth than GPU.

7.2.2 Comparison with GPM accelerators. Figure 13 shows a com-
parative performance analysis of FlexMiner, FINGERS, Shogun and
our X-SET, measured in speedup of logarithmic scale relative to
FlexMiner. The x-asix represents the pattern-graph combination,
sorted firstly by graph size then by pattern. We only compare data
points with absolute time from FlexMiner paper [14] because FIN-
GERS [11] and Shogun [49] only provide relative speedup.

X-SET consistently achieves the highest speedup for all bench-
marks, with particularly impressive performance on 4CL-YT with
maximum 42.9× speedup. Competing accelerators achieve lower
performance due to their reliance on simple merge-based SIUs,
which limit throughput. X-SET also performs better on more sparse
graphs, benefiting from the ability of our barrier-free scheduler to
sustain high SIU utilization under irregular workloads.

The proposed accelerator significantly improves performance on
the AS and MI datasets. Their small working sets fit entirely within
the shared cache, enabling the Order-Aware SIUs to exploit data
locality for higher throughput. The YT graph shows exceptional
speedup due to its highly skewed degree distribution and large
maximum degree. This allows the Order-Aware SIU to capitalize on
long input streams and the barrier-free scheduler to efficiently man-
age the resulting sparse task trees. Conversely, the largest graphs,
PA and LJ, exhibit more modest speedups. PA’s low average and
maximum degree limit the Order-Aware SIU’s throughput, though
our scheduler’s effectiveness is still evident. LJ’s performance is
constrained by its large working set, which exceeds the shared
cache and increases memory pressure.

Table 4: Area comparison of a single PE with previous works

Tech Total Control Compute Cache
FINGERS [11] 28nm 0.934 0.069 0.115 0.332
Shogun [49] 28nm 0.971 0.106 0.115 0.332

FlexMiner [14] 15nm 0.180 Area breakdown not provided
Ours 28nm 0.305 0.044 0.077 0.174

In summary, X-SET achieves speedups of 1.3×-42.9× compared
to FlexMiner, 1.2×-37.3× over FINGERS, and 1.1×-25.1× when mea-
sured against Shogun. When evaluated using geometric mean, X-
SET’s performance advantages remain substantial, with 6.4× over
FlexMiner, 3.6× compared to FINGERS, and 2.9× over Shogun.

7.3 Area and Compute Density Comparison
7.3.1 Area comparison. As detailed in Table 4, our PE, synthesized
using Synopsys Design Compiler with a TSMC 28nm library at
1GHz, occupies a total area of 0.305 mm2. The cache is the largest
component at 57.0% of the PE area. The order-aware SIUs and the
barrier-free Scheduler account for 25.4% (0.077 mm2) and 14.4%
(0.044 mm2), respectively. For comparison, the control unit in FIN-
GERS is 0.069 mm2, and Shogun’s optimized scheduler is 0.037 mm2.
Our barrier-free Scheduler, benefiting from high-throughput SIUs
and a barrier-free design, achieves a 36.2% area reduction compared
to FINGERS. While larger than Shogun’s scheduler, our approach
holistically considers the entire PE architecture for improved over-
all efficiency. The area and power analysis in Table 4 intentionally
excludes the Rocket core. In our design, the PE operates as a co-
processor, while the Rocket core functions as a controller. The
Rocket core’s role is confined to preparing the data payload and
offloading the primary computation to the PE, after which it awaits
the result. This architectural choice justifies a direct comparison of
a single PE. Consequently, Figure 13 also omits the performance
of the advanced IEP-enabled mining plan, as this process requires
active processing by the Rocket Core.

7.3.2 Compute density comparison. As to compute density, while
FlexMiner [14] reports a smaller per-PE area, it requires 40 PEs to
achieve its reported performance. When examining performance
per area metrics, X-SET delivers between 1.9× and 63.3× speedup
over FlexMiner with a geometric mean of 9.5×, even without ac-
counting for the advanced 15nm fabrication technology utilized
by FlexMiner. Furthermore, X-SET’s area efficiency extends be-
yond comparisons with other systems. X-SET demonstrates 4.6×
to 142.9× speedup over FINGERS with a geometric mean of 13.7×.
Similarly, when compared to Shogun, X-SET achieves 4.4× to 99.9×
speedup with a geometric mean of 11.5× for performance per area.
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Figure 14: Performance of simple merge-based SIU and
SMA [15] normalized to order-aware SIU

7.4 Evaluation on Order-Aware SIU
7.4.1 Performance. Figure 14 compares the end-to-end through-
put of our Order-Aware SIU against Systolic Merge Array (SMA)
from DIMMining [15] and simple merger adopted by many accel-
erators [11, 14]. To isolate each design’s behavior, the evaluation
uses a single PE and SIU. For a fair comparison, all designs incorpo-
rate BitmapCSR with a bitmap width of 8. Both the SMA and our
architecture use a segment length of eight. Each subfigure shows
the results for different patterns on a specific data graph. The
efficiency of hardware-accelerated set operations depends on the
input set length. Short sets are latency-sensitive due to pipeline
setup overheads, while long sets are throughput-sensitive and re-
quire sustained processing. For instance, a merge-based SIU offers
low latency, performing well on small neighbor sets in low-degree
graphs (e.g., PP, WV, PA) or simple patterns (e.g., 3CF, 4CF), but its one-
element-per-cycle limitmakes it inefficient for large sets. In contrast,
the SMA is optimized for high throughput but has higher setup
latency, making it better for large sets and complex patterns (e.g.,
CYC, DIA, TT). Our Order-Aware SIU is architected to balance both
latency and throughput and employs an O(log𝑁 ) stages pipeline
to deliver a throughput of 𝑁 elements per cycle. This design en-
sures robust performance across diverse workloads. As a result, our
Order-Aware SIU consistently superior performance across nearly
all test cases, yielding an average speedup of 1.64× over SMA and
1.9× over a baseline Merge Queue on end-to-end GPM workloads.

7.4.2 Area and Power. Figure 15 compares the area and power
consumption of our Order-Aware SIU (OA) and the Systolic Merge
Array (SMA) across segment lengths of 2, 4, 8, and 16. Both total
area and power are broken down into input, output, and processing
pipeline components, with input/output costs held constant for
each segment size. As shown in the left panel, the Order-Aware
SIU consistently achieves better area efficiency than SMA, with
reductions ranging from 34.1% (at segment length 2) to 62.4% (at
length 16). Power improvements are even more pronounced, reach-
ing 75.4% at segment length 16, as seen in the right panel. These
benefits stem from our SIU’s O(𝑁 log𝑁 ) hardware complexity,
in contrast to SMA’s O(𝑁 2). As a result, the Order-Aware SIU
achieves performance-per-area gains of 2.3×–9.5× over SMA,
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and 3.0×–12.2× over the Simple Merge Queue, with geometric
mean throughput improvements of 3.5× and 4.5×, respectively.

7.5 Ablation Analysis
Figure 16 presents an ablation study evaluating nine configurations,
combining three distinct SIU implementations (our Order-Aware
SIU, SMA, and a simple merger) with three different scheduler poli-
cies (our barrier-free scheduler, DFS, and pseudo-DFS). Performance
is normalized to the configuration with both of our optimizations.

The results underscore the criticality of both components. When
using our Order-Aware SIU, performance degrades to 0.80×with the
pseudo-DFS and further to 0.62×with a conventional DFS. Similarly,
when paired with our barrier-free scheduler, replacing the SIU with
an SMA or a simple merger reduces performance to 0.60× and
0.55×, respectively. Notably, the performance bottleneck from a
suboptimal scheduler is nearly identical to that from a suboptimal
SIU; using the conventional DFS with our advanced SIU (0.62×)
is as detrimental as using the SMA-based SIU with our advanced
scheduler (0.60×), demonstrating the effectiveness and robustness
of our proposed optimizations.

Furthermore, the relative impact of each optimization is data-
dependent. For the small and sparse PP graph, performance is more
sensitive to the scheduler policy, as the workload is not demanding
enough to require a high-throughput SIU. Conversely, the larger
and more complex WV, AS, and MI graphs are more profoundly
impacted by the SIU implementation, as their execution is bound
by the throughput of set operations.

7.6 Scalability Analysis
7.6.1 Number of PEs. Figure 17a illustrates the scalability of our
design as the number of PEs increases exponentially. Each subgraph
shows performance trends for different dataset-pattern pairs, with
curves distinguished by color and markers. X-SET demonstrates
near-linear performance scaling with increasing PEs for most test-
cases, particularly evident for datasets PP, AS, WV, and patterns
3CF, 4CF, and 5CF. However, scalability degrades with complex pat-
terns on the YT dataset. The YT graph is highly skewed as shown
in Table 3, meaning its data is unevenly distributed. This causes
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Figure 17: Scalability of X-SET

set difference (like in mining CYC and TT) to generate very large
intermediate results. These temporary results then compete with
the global graph data for limited cache memory, creating cache
contention that degrades performance.

7.6.2 Number of SIUs per PE. Figure 17b demonstrates the effect
of increasing SIUs per PE, with bank count and private cache size
scaled accordingly to maintain sufficient bandwidth. The speedup
correlates strongly with computational intensity (average degree
in Table 3). High-degree datasets (AS, MI, WV) achieve substantial
speedups of 2.8× to 3.7× with 4 SIUs per PE, while sparser graphs
(PP, PA, YT) show more modest gains of 1.4× to 1.6×. Overall, the
four-SIU configuration delivers an average speedup of 2.2× across
all datasets, optimally utilizing the 8-bank private cache in each PE
and highlighting the effectiveness of the barrier-free scheduler.

7.7 Sensitivity Analysis
7.7.1 Impact of cache size. Figure 18a shows impact of private
cache size, where each data point represents the geometric mean
speedup across six datasets for a given pattern. Patterns such as 3CF,
4CF, 5CF, and DIA show minimal sensitivity to cache size, while CYC
and TT see over 2× speedup when increasing private cache from
32KB to 128KB. This is because restrictive patterns generate smaller
intermediate data, imposing less cache contention.

Figure 18b evaluates impact of shared cache, with each data point
representing the geometric mean speedup across six patterns for a
given dataset. Here, cache sensitivity is more dependent to dataset.
Datasets like PP and WV fit well in even 1MB cache, showing stable
performance. Others such as AS and MI reach peak performance at
2MB (1.11×) and 8MB (1.56×) respectively, while YT continues to
benefit from increased cache capacity, indicating a large working
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set. Overall, our default configuration of 4MB shared cache offers a
balanced trade-off between performance and area efficiency.

7.7.2 Bitmap width in BitmapCSR. Figure 19 demonstrates the
influence of the bitmap width parameter on the performance of the
BitmapCSR format. The y-axis represents performance relative to
our default 8-bit width configuration. Each result is the geometric
mean of performance across six distinct patterns for a given data
graph. A bitmap width of 0 corresponds to the conventional CSR
format. The results show that performance generally increases with
the bitmap width. This improvement is credited to the increased
intra-element parallelism enabled by a wider bitmap within a 32-bit
word. However, the magnitude of this performance gain is affected
by the sparsity of the data graph. While the adoption of BitmapCSR
consistently shows a performance improvement at a geometric
mean of 1.30× speedup compared to CSR format, its overall impact
is relatively modest because real world graphs are highly sparse.

8 Conclusion
This paper presents X-SET, a high-throughput and scalable accel-
erator for GPM. It features two key innovations: an Order-Aware
Set Intersection Unit (SIU) that exploits the inherent ordering of
input sets to minimize redundant comparisons and a Barrier-Free
Task Scheduler that enables fine-grained, out-of-order execution of
DFS-based tasks across multiple processing elements. Integrated
on a RISC-V SoC, X-SET supports end-to-end complex GPM ac-
celeration without requiring software modifications. Experimental
results confirm the effectiveness of X-SET, which achieves up to
142.9× improvement in compute density (13.7× geometric mean)
and delivers up to 42.9× end-to-end speedup, with an average gain
of 6.4× over state-of-the-art GPM accelerators.
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A Artifact Appendix
A.1 Abstract
This artifact provides a comprehensive package to validate the
findings of our work. It includes: (1) The Chisel RTL source for
our X-SET hardware design; (2) VLSI scripts for synthesis and
for Power, Performance, and Area (PPA) evaluation; (3) A cycle-
accurate SystemC simulator for end-to-end performance evaluation;
and (4) Python scripts and Jupyter notebooks for data extraction
and plotting. These components enable the full reproduction of all
tables and figures in the evaluation section.

A.2 Artifact check-list (meta-information)
• Program: Chisel RTL, SystemC simulator, Python scripts/Jupyter
notebook

• Compilation: Chipyard[4], Synopsys Design Compiler, CMake,
C++20 Compiler (e.g. Clang 19)

• Binary: A pre-built simulator binary included in Docker image
• Data set: Real-world graph datasets
• Run-time environment: Docker, Linux shell
• Hardware: Standard x86-64 machine. Multi-core processor are
recommended for parallel execution.

• Execution: Shell scripts, GNU Parallel, Jupyter Notebooks
• Metrics: Area, power, execution time, speedup
• Output: Verilog files, synthesis reports (.rpt), CSV files, plots
• Experiments: Reproduction of Table 4 and Figures 12 to 19.
• How much disk space required (approximately)?: 20-30 GB
• How much time is needed to prepare the workflow (approxi-
mately)?: 20-30 minutes

• How much time is needed to complete experiments (approxi-
mately)?: Table 5 lists the estimated execution times for the cycle-
accurate simulator on an AMD EPYC 9684X CPU. The total required
time for all experiments exceeds 1500 CPU-core-hours.

• Publicly available?: Yes
• Workflow automation framework used?: Docker, CMake, shell
scripts, GNU Parallel

• Archived (provide DOI)?: 10.5281/zenodo.17176841

A.3 Description
A.3.1 How to access. The complete artifact, including all source
code and datasets, is archived on Zenodo. For the latest updates,
please refer to our AE GitHub repository2. The required graph data
can be downloaded from Google Drive3 and must be extracted into
the graphs/ directory at the root of the repository.

A.3.2 Hardware and Software dependencies. All experiments can
be performed on a standard x86-64 machine equipped with Docker.
We highly recommend using a server with a high CPU core count to
accelerate the simulation of numerous benchmark cases in parallel.
We also recommend using datasets other than LiveJournal (LJ) and
Patents (PA) for early-stage verification. The area and power analy-
sis portion of the evaluation requires Synopsys Design Compiler
2https://github.com/CLab-HKUST-GZ/micro58-xset
3https://drive.google.com/file/d/1d0muGAdL1zoal0cnMY4jf1HjQAnTM8J6/view
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Table 5: Estimated time needed for simulator execution

PP AS MI YT PA LJ

3CF 1.23s 8.35s 50.74s 153.70s 31.89m 2.04h
3MC 2.63s 24.52s 140.70s 25.25m 57.61m 4.96h
4CF 1.33s 51.18s 17.73m 254.80s 34.96m 7.96h
5CF 1.33s 335.61s 7.29h 7.27m 38.25m 9.14d
CYC 5.07s 69.12s 11.17m 1.87h 1.81h 1.56d
DIA 1.49s 180.51s 1.31h 41.40m 1.17h 1.41d
TT 5.12s 8.38m 2.69h 5.61h 2.17h 4.57d

(V-2023.12) and TSMC 28nm Process Design Kit (PDK) for identical
results.

If you do not have enough CPU power or time for full simu-
lator execution or do not have access to Synopsys’ commercial
synthesis software, we have provided all results, including all
simulator execution log, scripts for result gathering and plotting
(simulator-results), generated Verilog code (rtl-out) and syn-
thesis reports (vlsi-results), packed in xset-results.zip of
the Zenodo archive.

A.3.3 Data sets. The experiments utilize several real-world graphs
from established sources [24, 30]. All graphs are pre-processed and
included in the artifact download.

A.4 Installation
The primary setup step involves building the Docker images from
the rtl/ and simulator/ directories:
cd rtl
docker build -t micro58-xset-ae-rtl:v1.0 .
cd ../simulator
docker build -t micro58-xset-ae-sim:v1.0 .
cd ..

To bypass potential network issues during the build process,
pre-built images are also available on DockerHub:
docker pull xsun2001/micro58-xset-ae-rtl:v1.0
docker pull xsun2001/micro58-xset-ae-sim:v1.0

A.5 Experiment workflow
The evaluation is divided into two parts: Area/Power Analysis
and End-to-End Performance Evaluation. Detailed, step-by-step
instructions are available in the main README.md file.

A.5.1 Area and Power Analysis (Table 4 and Figure 15).

(1) Select Configuration: Choose the target hardware configura-
tion. For Table 4, use XsetDefault. For Figure 15, use XsetSX
for the Systolic Merge Array and XsetBX for our Order-Aware
SIU, where X is the segment width.

(2) Generate RTL: Launch the RTL container to generate Verilog
design from Chipyard and Chisel source code. Then copy the
Verilog codes to host directory.

docker run -it --name rtl micro58-xset-ae-rtl:v1.0 bash
> cd /opt/chipyard/sims/verilator
> make verilog CONFIG=<Config>

docker cp rtl:/opt/chipyard/sims/verilator/generated-src/\
chipyard.harness.TestHarness.<Config>/gen-collateral \
./vlsi/

(3) Run Synthesis: In the vlsi/ directory, edit env.sh to set the
CHIPYARD_TARGET and TOP_MODULE. Then, execute the synthe-
sis flow by sourcing the environment script (.env.sh) and
running the main script (run_synth.sh). Results (area.rpt,
power.rpt, timing.rpt, synthesized netlist) are generated to
vlsi/reports/<Config>.

A.5.2 End-to-End GPM Performance (Figures 12 to 14 and 16 to 19).

(1) Run Simulator: Launch the simulation container (micro58-
xset-ae-sim), mounting the graph datasets to /opt/graphs/
via -v./graphs/:/opt/graphs/.

(2) Execute Benchmarks: Navigate to /opt/xset/benchmarks.
Each figure in the paper has a corresponding execution script
(e.g., ./fig12.sh). These scripts leverage GNU Parallel to run
all necessary simulations. Use MAX_PROCS environment variable
to limit the maximum count of simulators running in parallel.

(3) Plot Results: Once simulations are complete, use the provided
Jupyter notebooks in /opt/xset/scripts (extractor.ipynb,
draw.ipynb, etc.) to parse the simulation logs, generate CSV
files, and render the final plots.

A.6 Evaluation and expected results
The artifact is designed to faithfully reproduce the data presented
in the paper.
• Area/Power: The synthesis reports, including generated area.
rpt and power.rpt, should contain values that closely match
those in Table 4 and Figure 15.

• Performance: The plots generated by the Jupyter notebooks
should align with the trends and conclusions presented in Fig-
ures 12 to 14 and 16 to 19. Minor performance variations due to
differences in host machine architecture are expected but should
not alter the primary findings.

A.7 Experiment customization
The artifact is highly configurable, allowing for exploration beyond
the specific experiments in this paper.

A.7.1 Hardware Customization. The X-SET hardware design uses
the standard Chipyard parameterization framework. A comprehen-
sive list of configurable parameters is located in rtl/src/main/
scala/xset/params.scala. These can be modified by defining a
new configuration class.

A.7.2 Simulator Customization. The simulator’s behavior is con-
trolled by a .toml configuration file. The baseline configuration is
fig12-overall.toml in simulator/benchmarks/ directory. New
experiments can be created by modifying this file. The simulator is
invoked via:
xset_systemc_simulator <dataset_idx> <pattern_name>

[--log=<log_dir>] [--cfg=<config_file>]

Here, dataset_idx and pattern_name select the corresponding
dataset and schedule listed in the given configuration file.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
and-badging-current

• https://cTuning.org/ae

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 GPM Definition
	2.2 Set-Centric GPM Algorithm
	2.3 Challenges of GPM Accelerator Design

	3 The Proposed Solution
	3.1 Order-Aware Parallel Set Intersection Unit
	3.2 Barrier-Free Task Scheduler

	4 X-SET Overview
	4.1 System Architecture
	4.2 Execution Flow

	5 Order-Aware Set Intersection Unit
	5.1 Micro-Architecture Overview
	5.2 Core Processing Pipeline
	5.3 Exploiting Order in Input Sets
	5.4 Parallel Set Operation on Sorted Segments

	6 Barrier-Free GPM Scheduling
	6.1 Task Management and Spawning
	6.2 Task Issuing and Execution

	7 Evaluation
	7.1 Experimental Setup
	7.2 Overall Performance Comparison
	7.3 Area and Compute Density Comparison
	7.4 Evaluation on Order-Aware SIU
	7.5 Ablation Analysis
	7.6 Scalability Analysis
	7.7 Sensitivity Analysis

	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology


